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Abstract 

The current study opens up a new field of not only predicting ‘if’ a subject progresses to Alzheimer’s 

disease but also ‘when’ this moment of progression likely will take place, since research has not yet 

addressed this multiclass classification problem. Predicting the moment of progression is of interest 

because this could contribute to finding therapies that modify the disease. The main purpose of the 

current study is to investigate to the extent to which predicting the progression of Mild Cognitive 

Impairment (MCI) to Alzheimer’s disease and this progression’s corresponding moment based on MRI 

biomarkers is possible. To classify subjects from the ADNI database to either MCI non-converters or 

MCI converters in 6, 12, 18, 24, 30 or 48 months in the future, the author conducted three experiments 

that led to a final model based on the Support-Vector classifier. This model performed significantly 

better than the Dummy classifier on the multiclass classification problem. However, these results must 

be interpreted with caution since results from a follow-up experiment suggest that the intervals of the 

moment of progression are too small. Future research should investigate the impact of different time 

intervals on the performance of the classifier to improve the model.  

 

Keywords: Alzheimer’s disease, moment of progression, multiclass classification, imbalanced data, 

Support-Vector classifier, Decision-Tree classifier, Logistic Regression, Stochastic Gradient Descent, 

Perceptron, linear Support-Vector classifier 
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Section 1: Introduction 

This section provides a general introduction to Alzheimer’s disease prediction. The introduction is 

divided into four parts. Subsection 1.1 provides the general context of the current study. Subsection 

1.2 presents the problem statement and the corresponding research questions, followed by the 

scientific and practical relevance in Subsections 1.3 and 1.4, respectively.  

1.1 Context 

The current study was conducted in the field of Alzheimer’s disease prediction. The prediction of 

Alzheimer’s disease is a relatively new field because not that long ago, the classification problem 

targeted by researchers shifted from mainly distinguishing Alzheimer’s disease subjects from controls 

to the far more challenging problem of predicting Alzheimer’s progression (Weiner et al., 2015). In 

this new field, findings may have clinical application. A physician can use this prediction to identify 

subjects who will progress to Alzheimer’s disease. This will then allow them to take suited actions for 

the subject, such as making psychological interventions and prescribing proper medication.  

 Alzheimer’s disease is most notable by (short-term) memory loss and other behavioral 

changes, which are caused by degeneration of brain cells (Moini, 2015). Although “Alzheimer’s 

disease” is often used interchangeably with “dementia”, it is important to note that these two terms are 

not the same. According to the Diagnostic and Statistical Manual of Mental Disorders, dementia is a 

general term for a decline in mental ability, which has to be severe enough to interfere with daily life 

(American Psychiatric Association, 2013). Alzheimer’s disease is the most common form of dementia. 

Explaining other forms of dementia, such as vascular dementia, frontotemporal dementia and Lewy 

body dementia, is beyond the scope of the current study and are, therefore, not discussed further. 

 

To predict Alzheimer’s disease, it is important to know how this disease develops over time. For this, 

some general terminology has to be introduced. Throughout the current study, the terms progression 

and conversion refer to the process of moving towards another stage. The first stage is Clinical Normal 

(from here on referred to as CN). A CN subject has no signs of cognitive decline. When there are 

cognitive changes that are significant enough to be noticed by the subject or by others surrounding him 

or her, but not large enough to interfere with daily life, the subject converts from CN to Mild 

Cognitive Impairment (from here on referred to as MCI). Mild Cognitive Impairment is an 

intermediate stage between age-related cognitive decline and Alzheimer’s disease. It is sometimes 

divided into early MCI and late MCI, which are denoted as EMCI and LMCI, respectively. The 

difference between EMCI and LMCI is that LMCI subjects have a lower score on the Logical Memory 

II subscale from the Wechsler Memory Scale (ADNI Manual, 2017). Mild Cognitive Impairment 

subjects are at risk of converting to Alzheimer’s disease. Mitchell and Shiri-Feshki (2009) indicated 
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that annually, 7% of MCI subjects convert to Alzheimer’s disease (AD), which is the final stage. The 

authors also indicated that the remaining subjects remained stable in MCI, developed other forms of 

dementia, or converted back to CN.  

  The current study concerns the prediction of which subjects at the MCI stage will progress to 

AD. A distinction is made between subjects diagnosed with MCI who remain stable and subjects 

diagnosed with MCI who progress to AD over time. For classification, subjects who remain stable are 

defined as stableMCI, and subjects who progress to AD are defined as progressionMCI. The 

development of AD over time is comprehensively explained in Section 2.1. 

 

To predict which MCI subjects will progress to AD, machine-learning approaches have been adopted 

(for review, see Weiner et al. (2015)). Machine learning is a field of pattern recognition that focuses 

on automatically detecting patterns in example data or through past experiences. These patterns are the 

basis for predicting.  

 There are different types of machine learning, namely supervised learning, unsupervised 

learning and reinforcement learning. The current study focusses on supervised learning. Supervised 

learning is a machine-learning task of inferring a model from supervised-training data. The training 

data consist of a set of training examples. Each example consists of an input object and its label or 

target. In the case of predicting AD, the input object consists of medical information of the subject and 

the label of whether the subject is likely to progress to AD. The learning algorithm analyzes the 

training data and produces a model that should predict the correct label for any valid input object. This 

requires the learning algorithm to generalize from the training data to unseen data in a reasonable 

manner. 

 

The medical information that is the basis for the input object could be vast. However, for the clinical 

application, gathering information based on many different methods to make a prediction is not ideal 

(Bauer, Rosendaal & Heit, 2012). In an ideal world, for every diagnosed MCI subject, a prediction is 

made on whether the subject is likely to progress to AD. To do so, the methods used for gathering 

medical data for the input object should be executed on a large scale. Thus, gathering all the 

information on a subject using all available methods would be costly.  

  To consider the clinical application of findings of the current study, the author compares the 

three most common techniques that provide insight into the health of a subject, namely Positron 

Emission Tomography (PET) scans, Magnetic Resonance Imaging (MRI) scans and lumbar puncture 

(for cerebrospinal fluid data), and subsequently selects one method. Regarding MRI’s applicability on 

a large scale, MRI scans are already performed on subjects who face troubles with their memory, 

which make MRI already accessible. Besides that, MRI scans are less expensive than PET scans and 

safer than PET scans and lumbar puncture.  

  Data from MRI scans are also of significant importance in the prediction of AD. MRI scans 
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provide insight into the volumes of different parts of the brain. Changes in volume of certain brain 

structures can be measured by MRI scans (Douglas, 1995). According to Jack et al. (2011), these 

changes, especially in the medial temporal structures, are considered to be a valid biomarker for 

conversion to AD at the MCI stage (Jack et al., 2011). Most prior studies relating to the prediction of 

AD included MRI biomarkers in the input object. Including MRI biomarkers in the input object 

resulted in higher accuracies in comparison with those achieved by excluding them when predicting 

AD progression.  

  Since MRI scans are accessible at the MCI stage and have proven to be of significant 

importance for the prediction of AD, the selected method in the current study is MRI scans. As a 

result, the input object in the current study is based on MRI biomarkers. The aforementioned leads to a 

trade-off. Excluding highly informative features from PET scans, lumbar puncture or other methods 

not investigated in the current study could lower the performance of the learning algorithm. However, 

this exclusion is made to consider its clinical application.  

 

An interesting aspect of predicting whether a subject will progress to AD is not only knowing ‘if’ but 

also ‘when’ this progression is likely to take place. For clinical application, this information is of 

importance for both the subject and medical treatment. In terms of medication and psychological 

interventions, it could be that an effective treatment differs for a subject who is likely progress to AD 

in four years in comparison with that of subjects who are likely to progress in six months. The 

practical and scientific importance is further discussed in Sections 1.3 and 1.4, respectively. 

 

To predict the moment of progression, the task shifts from binary classification to multiclass 

classification. Almost all studies concerning AD prediction are binary-classification problems (Huang, 

Yang, Feng & Cheng, 2017; Trezpacs, Sun, Schuh, Case & Witte, 2014; Chupin et al., 2009; 

Devanand et al., 2007). This initially means that the learning algorithm could classify each training 

example into two classes: progression to AD and no progression to AD. In the case of multiclass 

classification, there are more than two classes into which a training example could be classified. For 

predicting the moment of progression, possible classes are progression in one year, progression in two 

years, progression in three years and no progression.  

  Despite the importance of predicting the moment of progression, no research has investigated 

it yet. The reason why no researchers have investigated this before might be because multiclass 

classification is much harder than binary classification. Also, the differences between the classes when 

the progression point is more in the future may be too subtle and complex for a learning algorithm to 

find their pattern. Nevertheless, considering that predicting the moment of progression could benefit 

both the subject and the medical treatment, the extent to which it is possible to predict the moment of 

progression is worth investigating and discovering. 
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1.2 Problem Statement and Research Questions 

The goal of the current study is to investigate whether it is possible to predict not only if a subject will 

progress to AD but also the moment this progression will take place. This is examined by using 

supervised learning based on data from MRI scans. Therefore, the problem statement (PS) for the 

current study is as follows: 

 

PS:  To what extent can a classifier predict the progression of subjects from MCI to AD and the 

 progression’s corresponding moment, based on MRI biomarkers?  

 

Three research questions are set up to find an answer to the problem statement. The first research 

question (RQ) examines a classifier that performs best in distinguishing MCI and AD subjects at 

baseline. The second research question investigates the extent to which the classifier from experiment 

1 is able to make a distinction between stableMCI and different progressionMCIs in a binary 

classification task. The third research question examines the extent to which the classifier from 

experiment 1 is able to make a multiclass classification between stableMCI and different a 

progressionMCIs.  

 

The first research question is formulated as follows:  

 

RQ1: What classifier and in combination with which pre-processing method performs best in 

 distinguishing MCI subjects from Alzheimer’s disease subjects at baseline 

 

The first research question examines, in a proof-of-concept study, a classifier that performs best in 

distinguishing the following two classes: MCI subjects and AD subjects at baseline. These two classes 

are easier to distinguish than stableMCI and progressionMCI, and this ease makes it easier to verify 

that this classifier has practical potential. Different classifiers are investigated: Decision-Tree 

classifier, linear Support-Vector classifier, Logistic Regression, Perceptron, Stochastic Gradient 

Descent and Support-Vector classifier. Besides that, the best pre-processing step for each classifier 

will also be investigated. The pre-processing methods that are investigated are standardizing, 

normalizing and adding feature interactions. The classifier that performs best is used throughout the 

remainder of the study.  

 

The second research question is as follows:  

 

RQ2: To what extent can the optimized classifier make a binary distinction between stable MCI

  subjects and MCI subjects who progress to Alzheimer’s disease within 6, 12, 24, 30 and 48 
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 months? 

 

To predict progression and its corresponding moment, the extent to which the classifier from 

experiment 1 is able to make a distinction between stableMCI and different progressionMCIs in a 

binary-classification task is made. The moment of progression for the progressionMCI subjects is after 

6, 12, 24, 30 and 48 months. These time intervals are chosen in such a manner that every subset 

consists of at least 50 subjects before its pre-processing steps take place. This research question will 

gain insight into the complexity of making a distinction between the different classes. The hypothesis 

that will be tested is that classification is more complex when the progression moment is further away 

in time. Also, the performance achieved in this experiment can be compared to the performance of 

classifiers from previous studies to verify that the performance of this experiment’s classifier is in line 

with previously achieved performances. From now on, progression6MCI refers to the data of the 

subjects available 6 months before the progression takes place, progression12MCI represents the data 

of the subjects available 12 months before the progression takes place, and so on.  

 

The third and last research question is formulated as follows: 

 

RQ3: To what extent can the optimized classifier predict progression from MCI subjects to AD and 

 its corresponding moment in a multiclass classification task? 

 

From here on, multiclass classification is investigated. The six classes are the same as those used for 

experiment 2, namely stableMCI, progression6MCI, progresion12MCI, progression24MCI, 

progression30MCI and progression48MCI. Since multiclass classification is a different task from 

binary classification, the optimal parameters are investigated again. Finally, based on these findings 

and the results of the previous research questions, the optimized classifier is compared to a Dummy 

classifier to investigate the difference in performance of predicting progression and its corresponding 

moment.  

1.3 Scientific Relevance 

Since no previous studies tackled the multiclass problem regarding AD, the current study can be seen 

as a gateway to a new field in which the question of not only ‘if’ subjects progress to AD but also 

‘when’ subjects progress to AD is an important question to be answered.  

  The findings could make an important contribution to finding AD-modifying therapies. 

Currently, there is no AD-modifying therapy available (Sperling, Jack & Aisen, 2011). Series of 

disappointing clinical trials over the past decade have raised concerns about the current strategy for the 

development of AD-modifying therapies. The lack of clinical benefit could be caused by attempting 
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interventions at the wrong stage of the disease. This suggests that like other diseases, such as cancer, 

HIV/AIDS and cardiovascular diseases, the best opportunity to modify the course of AD is before 

extensive and permanent damage has occurred (Sperling et al., 2014). The ability to predict the 

moment of the disease’s progression opens up a new world of finding the right window for 

intervention. It could be possible that no AD-modifying therapy has been found, because the moment 

of progression has not been predicted yet. The accurate prediction of the moment of progression to AD 

could be a key aspect of this disease’s treatment. 

1.4 Practical Relevance 

Alzheimer’s disease affects the ageing population. The risk of getting AD increases as one’s age 

increases: worldwide, the percentage of people who have AD is 10% in over 65 years, 20% in over 80 

years, and over 40% of people in over 90 years (Alzheimer’s Association, 2016). It is estimated that 

worldwide, more than 46 million people are suffering from AD, and this number is likely to increase to 

131.5 million by 2050, since the life expectancy increases (World Alzheimer’s Report, 2015).  

  The findings could make an important contribution to lowering the disease burden for the 

subject and reducing healthcare costs. For the subject, knowing when he/she is likely to progress to 

AD might be hard to process. By contrast, depending on how far this moment is away, fitted 

psychological and psychosocial interventions can take place. It is known that AD is one of the largest 

burdens of diseases for the aging population, since the disease has the largest impact on the quality of 

life. The aforementioned interventions have the potential to improve cognitive function, delay 

institutionalization, reduce care strain and improve the quality of life. These interventions already take 

place, but researchers stated that their effectiveness depends on how far a subject is in the process of 

developing AD (Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga & Beckett, 2005). A 

psychological intervention for someone who will progress over 4 years could be completely different 

from that for someone who will progress over 6 months. 

  Currently, the cost of AD is already one of the highest of health care. In 2014, the total cost 

was 5 billion, which represented 5% of the total healthcare cost, in the Netherlands. Finding disease-

modifying therapies by predicting the moment of progression can reduce the cost of these therapies. It 

could be possible that lowering the dose of some medication in combination with memory training 

could be more effective for someone who will progress to AD in four years, and having a higher dose 

with no memory training could be more effective for someone who will progress in six months. Drug 

dosage and applying it in a more efficient and personal manner is a step toward more effective 

treatment and reducing its cost.  
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1.5 Outline 

The remainder of the current study is structured as follows: Section 2 contains a review of work on AD 

prediction. Section 3 describes the experimental setup, the data set and methods in detail. 

Subsequently, Section 4 presents the results of the experiments. Algorithms are compared to one 

another based on their performances, and results of binary- and multiclass-classification problems are 

also presented. Section 5 provides a discussion and recommendations for further research. Finally, 

Section 6 presents the conclusions of the current study. 
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Section 2: Related work 

This section presents related work regarding AD prediction. It starts with an explanation of the 

development of AD in Subsection 2.1. Thereafter, in Subsection 2.2, some relevant research regarding 

the current state of AD prediction is discussed. This will be followed by a discussion of classifiers that 

are used in the current study (Subsection 2.3). Subsequently, Subsections 2.4 and 2.5 discuss 

multiclass classification and imbalanced data, respectively.  

2.1 Development of Alzheimer’s disease 

A large and growing body of literature has investigated the development of AD. It is important to 

know how this disease develops over time, to gain insight into its related abnormalities that take place 

in the brain. Awareness of these abnormalities is necessary for selecting features for predicting 

progression to AD. 

  As discussed in the introduction, AD is caused by the degeneration of brain cells. Prior 

research indicates that this degeneration is likely to start 20 to 30 years before an individual is 

diagnosed with AD (Sperling et al., 2011). This means that the AD pathology develops while the 

individual is still cognitively normal (Dubois et al., 2010). At some point in time, this degeneration 

damages the brain in such a manner that it results in cognitive impairment. This is when an individual 

is diagnosed with MCI.  

  The aforementioned can be seen in Figure 2.1.1, which illustrates that different biomarkers 

indicate increasing abnormalities in the stage of CN and MCI. A point of interest is the line that 

represents brain structures, as brain structures are a biomarker that is visible on MRI scans. When the 

subject is diagnosed with MCI, this biomarker abruptly appears to be more abnormal and still 

increases even when someone is diagnosed with dementia. 
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Figure 2.1.1. Dynamic biomarkers of the Alzheimer’s disease development over time. On the x-axis, 

the clinical disease stage is represented, which starts with cognitively normal, followed by MCI and 

then dementia. On the y-axis, the biomarkers’ magnitudes are illustrated from normal to abnormal. 

Since the current study is based on MRI data, the line representing brain structure is of importance 

because this biomarker is measured using MRI. This Figure demonstrates that when a subject is 

diagnosed with MCI, the brain structure is increasingly abnormal, with a higher level of abnormality at 

the end of MCI in comparison with that at the beginning of MCI (Jack et al., 2010). This suggests that 

predict the moment of progression may be possible. Abbreviations: MCI = Mild Cognitive 

Impairment.  

 

The aforementioned brain structure consists of partial brain structures. These partial brain structures 

allow the demonstration of abnormalities at different times (Jack et al., 2010). Figure 2.1.2 provides 

insight into the order of presenting abnormalities for different parts of the brain. It demonstrates that as 

the disease progresses, the medial temporal lobe first changes. The medial temporal lobe includes the 

hippocampus, along with the surrounding regions that consist of parts of the ventricles, fusiform and 

entorhinal regions. The medial temporal lobe is known for its functions in the long-term memory. This 

explains why memory loss is often the first symptom of AD (Burns, Page & Winter, 2005).  

  Shortly after changes in the medial temporal lobe, the lateral temporal lobe will be affected. 

The lateral temporal lobe is located in the outer part of the brain and plays an important role in 

hearing, verbal and language functions as well as visual recognition. Examples of brain structures of 

which the lateral temporal lobe is composed are the fusiform, ventricles and entorhinal regions.  

 After this, the next abnormalities appear in the frontal lobe. The frontal lobe is located at the 

front of the brain and involves movement, reasoning, planning, certain speech functions, and problem 

solving. Part of the ventricles belongs to the frontal lobe. 
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Figure 2.1.2. Dynamic biomarkers of the Alzheimer’s disease stage. On the x-axis, the clinical disease 

stage is represented. On the y-axis, the biomarkers’ magnitudes are illustrated from normal to 

abnormal. This Figure demonstrates that abnormalities appear in the following order: medial temporal, 

lateral temporal, and frontal lobe (Jack et al., 2010).  

 

Taken together, Figure 2.1.1 indicates that abnormal changes take place way before the disease is 

physically evident. These abnormalities make AD prediction suitable for learning algorithms. Because 

the medial temporal lobe illustrates the first abnormalities according to Figure 2.1.2, including the 

structures that belong to this lobe would make sense in the input object for machine learning, such as 

hippocampus, ventricles, the fusiform and entorhinal regions. 

2.2 The current state of Alzheimer’s disease prediction 

As mentioned in the introduction, only recently, the classification problem targeted by researchers has 

shifted from mainly distinguishing AD subjects from controls to the more challenging and more 

clinical applicable classification problem of distinguishing MCI converters from non-converters 

(Weiner et al., 2015). Not surprisingly, distinguishing MCI converters from non-converters is a more 

complex task in comparison with distinguishing AD subjects from controls, because the differences 

between the two classes are smaller.  

  This is illustrated by the accuracies of the different classifying tasks. Prior studies indicated 

that the best classifiers reached accuracies in the mid-90% range for distinguishing between AD 

subjects and control subjects. The best classifier for classifying MCI converters and non-converters 

achieved accuracies in the low 80% (for review, see Weiner et al. (2015)). These best accuracies are 

achieved when cognitive measures, genetic, CSF, MRI and PET biomarkers are combined (Weiner et 

al., 2015). 
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Huang, Yang, Feng and Cheng (2017) demonstrated that 79% accuracy can be achieved when one 

uses only MRI biomarkers as the input object when distinguishing MCI converters from MCI non-

converters. The authors did not distinguish in when the conversion from MCI to AD takes place.  

  When a specific moment in time is selected for the progression to AD, accuracies are slightly 

lower. As an example, Trezpacs, Sun, Schuh, Case and Witte (2014) reported that logistic regression 

based on MRI biomarkers achieved an accuracy of 67% for classifying MCI converters and MCI non 

converters with the moment of progression 24 months in the future. Chupin et al. (2009) achieved a 

higher accuracy of 71% for classifying MCI controls and MCI converters, but their MCI converters 

would convert in 18 months instead of 24. Another example is the study conducted by Wolz et al. 

(2010). The authors achieved a lower accuracy (64%) of distinguishing MCI controls from MCI 

subjects who would convert to AD in 12 months.  

  One would expect that a learning algorithm would perform better when the moment of 

progression was closer. This is because, as can be seen in Figure 2.1.2, the brain is more distinctive 

and thus makes it easier to find boundaries and patterns for the learning algorithm (Jack et al., 2010). 

These results suggest otherwise. However, because these researchers used different learning 

algorithms, a sufficient comparison cannot be made.   

 

One of the first studies that thoroughly examined the prediction of progression from MCI to AD 

through multiple future time points using the same learning algorithm was conducted by Westman, 

Muehlboeck, and Simmons (2012). Their goal was to further investigate how well the model that 

could distinguish between AD subjects and controls could also predict the conversion at different time 

points (12, 18, 24 and 36 months). The approach was the following: based on different time points 

after the first visit, namely after 12, 18, 24 and 36 months, the class to which the subjects were 

assigned is determined based on those time points: stableMCI or progressionMCI. For example, at the 

time point of 36 months, subjects who were assigned to MCI converters consist of subjects who 

converted at 12, 18, 24 and 36 months. The input object for the classification task between MCI 

converters and non-converters was MRI scans of the subjects that were made on the objects’ first 

visits. The Support-Vector classifier achieved an accuracy of 59%, 66%, 66% and 66% for 12, 18, 24 

and 36 months, respectively. 

  There are two key limitations of this approach. Even though the researchers examined the 

difference in performance on different time points, they did not separate the moment of progression 

for subjects assigned to progressionMCI. As a result, when the future time point is further away in 

time, there is more variety in the moment subjects progressed in progressionMCI. This means that for 

the time point of 36 months, progressionMCI consists of all subjects who progressed to AD in 12, 18, 

24 and 36 months after the first visit. This is because they are all assigned to the same group. Only for 

the time point of 12 months is it certain that the subject assigned to progressionMCI progressed within 
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12 months. The consequences of this drawback of their approach is that no conclusions can be made 

about the reason why the model performed better, worse or the same in comparison with other time 

points.  

  Another limitation is that there is no distinction made between subjects who remained stable 

during the study and subjects who remained partly stable and progressed to AD later on in the study. 

For example, some subjects who are predicted as MCI non-converters at 12 months after the first visit 

are likely to convert to AD at time point 18, 24 or 36 months after the first visit. The problem with this 

is that subjects who progressed later in the study could already demonstrate an abnormal pattern at 

baseline, since abnormalities take place inside the brain long before a subject is diagnosed with AD, as 

discussed in Section 2.1. Despite this, these subjects are assigned to stableMCI, whereas they will 

progress to AD later on in the study; thus, they are not so stable after all. As a result, this could have, 

especially, a negative effect on the subset based on the future time point of 12 months. This is because 

stableMCI consists of subjects who converted at the point of 18, 24 and 36 months. It is likely that the 

difference of performance for the moment of 12 months after the first visit (59% in comparison with 

66% for the other time points) is due to the impurity of the stableMCI class. 

   The study of Westman, Muehlboeck, and Simmons (2012) would have been more interesting 

if these authors had adopted another approach for assigning subjects to the stableMCI and 

progressionMCI classes.   

 

The general trend based on all the studies reviewed here is that the accuracies of classification based 

on MRI scans are comparable with the accuracies achieved when using the best feature combinations. 

When one selects a precise moment of progression, the accuracies are somewhat lower. Very few 

publications can be found on examining the prediction of progression from MCI to AD through 

multiple moments of progression using the same learning algorithm. However, the approach taken by 

Westman, Muehlboeck, and Simmons (2012) has its limitations, which are caused by the impurity of 

the stableMCI class.  

2.3 Classifiers 

Plentiful learning algorithms have been adopted for AD classification. This is in line with the 

observations of Caruana and Niculescu-Mizil (2006), who stated that there is no learning algorithm 

that performs best on all tasks. Some models with a high average performance have a poor 

performance on some problems, whereas some models with a low average performance have a high 

performance on other problems. Thus, it is common practice to try out different machine-learning 

algorithms to find the algorithm that suits a particular task best. Hence, six learning algorithms that 

have proved to work for either classifying AD from controls or MCI non-converters from MCI 

converters are reviewed. The algorithms are as follows: Decision-Tree classifier (DTC), linear 
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Support-Vector classifier (LSVC), Logistic Regression (LR), Perceptron (PER), Stochastic Gradient-

Descent classifier (SGD) and Support-Vector classifier (SVC).  

 

In the remaining part of this subsection, these six classifiers are discussed, together with their 

implementation according to the literature on AD prediction.  

 

The first classifier to be reviewed is the DTC. The decision tree is used in prior research for 

distinguishing AD subjects from CN subjects based on CSF biomarkers (Bombois et al., 2013). A 

decision tree is built in a top-down manner, with the aim of finding an attribute through which to split 

the classes at each stage and then recursively processing the subproblems that result from the split. 

The best split represents a separation of two classes that is as pure as possible; in this case, purity 

means that instances are all from the same class (Murty & Raghava, 2016). This generates a decision 

tree. One of the strengths of the decision tree is that it can handle both continuous and categorical data; 

this is useful for predicting AD. A weakness of the decision tree is that it can only search for decision 

boundaries that are parallel to the axis. This means that when the decision boundaries are not parallel, 

the decision tree performs poorly.  

 

The LSVC is the second classifier to be reviewed. It was used in prior research for separating AD 

subjects from no-AD subjects (Martínez-Murcia, Ortiz, Górriz, Ramírez, & Illán, 2015). This classifier 

fits the data that are provided and returns a best-fit hyperplane that makes a distinction in the data. The 

LSVC is useful in many cases and has a high average performance. A disadvantage of the LSVC is 

that it only performs well when the data are linearly separable. 

   

The third classifier to be reviewed is LR. Logistic Regression is used in prior research for 

distinguishing MCI converters from MCI non-converters based on metabolomic data (Orešič et al., 

2011), demographic and genetic information, baseline cognitive scores, lab tests and MRI data (Li, 

Liu, Gong & Zhang, 2014). Logistic Regression gives an output that represents the probability that a 

certain input belongs to a certain class. Advantages of LR are that it is inherently simple, it has a low 

variance, and it is less prone to over-fitting in comparison with other classifiers such as the decision 

tree. Disadvantages are that all variables need to be relevant for prediction, whereas other classifiers 

can make a distinction themselves about which variables are informative or not. Therefore, subsection 

3.1.3 verifies whether this is the case, to be able to apply logistic regression.  

 

The fourth classifier to be discussed is the PER. It is used in prior research for distinguishing AD 

subjects from controls based on different cognitive tests, physical examinations, age, neuropsychiatric 

assessments, mental examinations and laboratory investigations (Joshi, Simha, Shenoy, Venugopal & 

Patnaik, 2010). The PER is the simplest form of a neural network, which has two layers: the input and 
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the output layers. The PER learns how to transform input into a desired outcome; therefore, it is most 

used for classification tasks. An advantage is that the PER can be used for complex problems, which 

are for a part of multiclass classification. A weakness is that it can only deal with linearly separable 

data.  

 

The fifth classifier to be examined is the SGD. The SGD is used in prior research for distinguishing 

AD subjects from controls (Sarraf, Anderson & Tofighi, 2016). This classifier updates a particular set 

of parameters in such a manner that the error function is minimized. Based on only one training 

sample at a time, the parameters are updated. An advantage of the SGD is its efficiency to handle large 

amounts of data. One disadvantage is that SGD is sensitive to feature scaling. Therefore, it is highly 

recommended to scale the data. This is considered in selecting the best pre-processing method. 

  

The last classifier to be discussed is the SVC. The SVC is used in prior research to distinguish MCI 

converters from MCI non-converters based on MRI (Westman, Muehlboeck, & Simmons, 2012; 

Huang, Yang, Feng, & Chen, 2017). The SVC tries to find a hyperplane that separates two classes to a 

maximum extent. It is similar to the LSVC, except for the fact that data for the SVC do not have to be 

linearly separable. This is one of the classifier’s advantages over others. One other strength is that it 

performs well in a high-dimension feature space. One of the weaknesses is that it is easy to overfit, 

and one method of minimizing overfitting is using cross-validation, which is used in the current study 

and explained in Subsection 3.6.  

 

2.4 Multiclass classification 

So far, no research has been found regarding multiclass classification of AD progression. All studies 

regarding AD prediction have been binary-classification tasks, either classifying AD from controls or 

MCI converters from MCI non-converters. A binary-classification task means that the model predicts 

whether a subject is in class A or B. When there are more than two classes, the prediction is called a 

multiclass-classification task. A multiclass-classification task is more complex than a binary one 

because the classifier has to learn constructing a larger number of separation boundaries or relations 

(Hsu & Lin, 2002). In general, the classification error rate is higher in multiclass problems compared 

to binary problems, as there can be an error in any of the decision boundaries or relations (Bala & 

Agrawal, 2010). 

  There are two types of multiclass-classification algorithms: algorithms that deal directly with 

multiple classes and algorithms that divide a multiclass problem into sets of binary problems and then 

combine them. The decision tree is an example of an algorithm that deals directly with multiple 
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classes. All other classifiers decompose this problem into sets of binary ones. Most learning 

algorithms include a parameter on whose basis the method can be chosen. 

2.5 Imbalanced Data  

In recent years, there has been an increasing amount of literature published on class-imbalance 

classification (Ali, Shamsuddin & Relescu, 2015). Class imbalance occurs when one class is 

significantly larger than another class. This can be observed in various domains, including medical 

diagnosis. For a medical diagnosis, such as predicting AD, the class of interest is often 

underrepresented. However, recognizing this class is important because errors in diagnostics bring 

further complications to the subjects’ treatment.  

  The problem with imbalanced data is that most classification algorithms assume that the 

training set is equally distributed. Imbalanced data hinder a classification task, thus resulting in lower 

performance. This is due to the lack of data of the minority class. This small sample size leads to 

difficulties in discovering patterns within these data. In an analysis of the effect of sample size on error 

rate, Japkowicz and Stephen (2002) indicated that when training sample size increases, the error rate 

of the imbalanced-class classification reduces. This is because the classifier is able to build better 

patterns for classes since there is more information available. To determine the effect of the degree of 

imbalanced-data distribution on performance, Sun, Wong and Kamel (2009) compared various 

degrees, but the effect is not yet explicitly known. 

  Besides that imbalanced data decrease the performance of the classifier, there is another 

problem with imbalanced data. When classes are highly imbalanced, accuracy is not a sufficient 

evaluation method. The explanation is that when the minority class is underrepresented by the data, 

this minority class will be ignored by the classifier, and the model can still achieve a high accuracy. 

For example, when the majority class consists of 95% of the data, an accuracy of 95% can be achieved 

by only classifying each example as the majority class. This is called the accuracy paradox.  

  

To overcome the problem of imbalanced data, there are two methods of making the training data 

balanced. One method is applying undersampling on the training data, which means that examples 

from the majority class are removed until there are equal numbers of examples in both classes. 

Removing data has the downside of losing potentially important information about the class. 

  The other method is called oversampling. This means that examples from the minority class 

get duplicated. One oversampling technique is the Synthetic Minority Oversampling Technique 

(SMOTE), and it is becoming more and more popular with imbalanced-class classification problems 

(Borowska & Topczewska, 2016). The manner in which SMOTE works is as follows: it adds new 

examples to the minority class, by computing a probability distribution to model the minority class and 

performing certain operations on the original data. This increases new examples, but important to note 
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is that it does not provide new information about the class. Besides that, in highly unbalanced data 

sets, too much oversampling may result in overfitting (Agrawal et al., 2015). It is important to note 

that SMOTE is not applied to the test set because that would synthesize the test set and thus make the 

prediction worthless (Borowska & Topczewska, 2016). 

  Prior research investigated how to improve the performance of a learning algorithm on 

imbalanced binary-class data sets, in which there was one majority class and one minority class. The 

researchers suggested using a combination of oversampling and undersampling to reach the best 

performance of a classifier (Kotsiantis, Kanellopoulos & Pintelas, 2006; Chawla, 2005; Weiss, 

McCarthy & Zabar, 2007). Therefore, this suggestion is followed for the binary-classification problem 

in the current study.  

 

While imbalanced data are a problem for binary classification, they are even more problematic in 

multiclass classification (Singh & Ade, 2015). There are multiple ways in which class imbalance can 

appear in multiclass data. One common way is that there is a so-called ‘super majority’ class that 

contains most of the instances in the data set. Another possibility is that there is a class that is 

significantly small in comparison with other classes (Hoens, Qian, Chawla & Zhou, 2012).  

  One issue arises for multiclass data sets: most existing solutions for oversampling are 

applicable to binary-class problems only. These solutions, such as SMOTE, cannot be applied directly 

to a multiclass imbalanced data set (Sun, Kamel & Wang, 2006). To date, not many methods have 

been developed and introduced to deal with imbalanced data for multiclass classification (Agrawal et 

al., 2015). 

  To address this problem, Agrawal et al. (2015) proposed an algorithm called SCUT (SMOTE 

and Clustered Undersampling Technique). The basis of this technique is the following: the average 

number of examples of all classes is calculated. Oversampling is applied to classes that contain fewer 

examples than the average. This will be done through a one-versus-all method (OVA).  

Undersampling is applied to classes that contain more examples than the average. Oversampling and 

undersampling are applied to all classes in such a way that all classes contain as many examples as the 

average number of examples.  

  Even though this algorithm is not widely adopted, Agrawal et al. (2015) indicated that SCUT 

provides a sufficient remedy for the multiclass problem; therefore, this suggestion is followed for the 

multiclass-classification problem in the current study.  
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Section 3: Method 

This section provides a description of the methods used in the current study. It starts with a description 

of the data in Subsection 3.1. This includes an explanation of the manner in which the subsets are 

made for each research question in the section, a description of the features used for making these 

subsets, and features used for object information on the learning algorithms. Thereafter, an explanation 

of how this study dealt with missing values and imbalanced data is provided in Subsections 3.2 and 

3.3, respectively. This is followed by the evaluation method (Section 3.4) and software used in the 

current study (Subsection 3.5). Finally, this section provides an extensive explanation of the 

procedures for the current study’s experiment in Subsection 3.6. 

3.1 Data Description 

The data used for the current study are from the ADNImerge file obtained from the Alzheimer’s 

disease Neuroimaging Initiative database (ADNI, 2017). The ADNImerge data set includes a total of 

1.737 adults who were recruited from over 50 locations across the United States and Canada, with 

ages ranging from 55 to 92 years. These subjects were followed over time. The data is contained in 

12.734 rows and 201 columns, of which each row represents one visit from each subject. On every 

visit, PET scans, MRI scans, cognitive test and other tests were conducted. In this file, all data from 

MRI scans were converted into MRI voxels.  

  At baseline, when each of them visited the study for the first time, the 1.737 subjects were 

diagnosed with the following: 417 subjects with CN, 106 subjects with Subjective Memory Concerns 

(SMC), 310 subjects with EMCI, 562 subjects with LMCI and 342 subjects with AD. As can be seen in 

Figure 3.1, not every subject visited the study at every planned follow-up visit. Only 46% of all 

subjects at the start visited the study after 3 months, but 93% showed up on the follow-up visit, i.e. 6 

months after the first visit. This indicates that some subjects remained in the study, without being 

present at every follow-up meeting. Also, there was a significant drop after the 24th month as well as 

after the 36th and the 48th months. This indicates that over time, fewer data are available. 
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Figure 3.1. An overview of the number of subjects per visit. The x-axis represents the moment of visit, 

with 000 representing the first visit (baseline), 003 representing three months after the first visit, and 

so on. The y-axis illustrates a unique number of subjects on each visit, which is equal to the number of 

observations on that visit. A total of 12,734 visits were made by 1.737 subjects. This figure 

demonstrates that as the time continues, fewer data are available.  

3.1.1 Subsets  

To answer the research questions, different subsets are made from the original data. For RQ1, the goal 

was to find the best classifier that could make a distinction between MCI and AD at baseline. Hence, 

subjects who were diagnosed with EMCI or LMCI (together representing MCI) and AD on the first 

visit were selected. Table 3.1.1.1 gives insight into the frequencies and percentage of the target 

variable.  

Table 3.1.1.1 

Target variable RQ1: Frequency and percentage of MCI and AD diagnosis at baseline 

Category Description Frequency Percentage 

1 MCI 872 72 

2 AD 342 28 

Total  1214 100 

Frequency stands for the number of subjects in a class. In comparison with the total number of 

subjects, 1214, a percentage is made to gain insight into the ratio between the two classes.  

Abbreviations: MCI = Mild Cognitive Impairment; AD = Alzheimer’s disease. 
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The goal for RQ2 was to investigate the extent to which this classifier is able to make a binary 

distinction between stableMCI and progressionMCI, on different time intervals. First, two groups 

were made from the original data set: stableMCI and progressionMCI.  

  The criteria for selecting subjects for stableMCI were as follows: the subjects were 

diagnosed with EMCI or LMCI on the first visit, and on every follow-up visit, they received no other 

diagnosis except EMCI or LMCI. Thus, each subject assigned to stableMCI remained truly stable 

during the course of the study. 

  The criteria for selecting subjects for progressionMCI were as follows: the subjects were 

diagnosed with EMCI or LMCI on the first visit, and at a certain point in time, they progressed to AD 

and were diagnosed with AD on every follow-up meeting. Therefore, 25 subjects were excluded from 

the study because they were diagnosed with MCI after an AD diagnosis. See Table 3.1.1.2 for the 

frequencies and percentages of these two groups the subset for RQ2.  

 

Table 3.1.1.2 

Target variables RQ2 and RQ3: Frequency and percentage of stableMCI and progressionMCI at 

baseline 

Category Description Frequency Percentage 

1 stableMCI 484 61 

2 progressionMCI 303 39 

Total  787 100 

Frequency stands for the number of subjects in a class. In comparison with the total number of 

subjects, 787, a percentage is made to gain insight into the ratio between the two classes.  

Abbreviations: stableMCI = subjects who remained stable; progressionMCI = subject who 

progressed to Alzheimer’s disease. 

 

After this, the progressionMCI group was further divided. It was first divided according to the 

moment in time the subject made the progression to AD. Based on that moment of progression, five 

subsets were made, containing the subject’s data 6, 12, 24, 30 and 48 months before the subject made 

the progression to AD. Table 3.1.1.3 presents the number of subjects at different moments in time. 

Important to note is that for categories 2 to 6, the number of subjects is equal to the number of 

observations, since these categories represent a particular moment in time. However, for category 1, 

this is not the case since this group is stable and does not convert to AD, and it should not matter 

whether observations are selected in the beginning, middle, or end of the study. Therefore, no 

particular moment in time is chosen. The MCI stable group consists of 484 subjects with a total of 

2.469 observations that are divided among different time points. To prevent bias towards a particular 

subject, because multiple observations of the same subject are compared against the other class in 
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which every subject is unique, only one observation per subject is used. This is selected randomly, and 

this selection for stableMCI is used for all comparisons.  

  As a result, five subsets were made for RQ2, namely stableMCI and progression6MCI, 

stableMCI and progression12MCI, stableMCI and progression24MCI, stableMCI and 

progression30MCI as well as stableMCI and progression48MCI.  

 

Table 3.1.1.3 

Target variables RQ2 and RQ3: Frequency and percentage of stableMCI, progression6MCI,  

progression12MCI, progression24MCI, progression30MCI and progression48MCI 

Category Description Frequency Percentage 

1 stableMCI 484 41 

2 Progression6MCI 180 15 

3 Progression12MCI 205 17 

4 Progression24MCI 173 15 

5 Progression30MCI 79 7 

6 Progression48MCI 52 4 

Total  1173 100 

Frequency stands for the number of subjects who are available for each class separately. In 

comparison with the total, 787, a percentage is made to gain insight into the ratio. Important to note 

is that for categories 2 to 6, the frequency is equal to the number of observations, whereas for 

category 1, this is not the case.  

 

For RQ3, the goal was to investigate the extent to which an optimized classifier that is able to predict 

whether and when a subject will progress to AD. The same classes from RQ2 were used. The 

difference is that instead of a binary classification, all classes were merged together, thereby changing 

the classification task to a multiclass classification.   

3.1.2 Variables 

To make these subsets, four variables were necessary: research ID (RID), visit (VISCODE), diagnosis 

at first visit (DX.bl) and diagnosis on follow-up visit. The variable DX.bl is a categorical value that 

represents the baseline diagnosis. This variable was needed for all subsets. The feature DX is also a 

categorical value that represents the diagnosis on a follow-up visit. Important to note is that the labels 

from DX differ from those from DX.bl. In DX.bl, there is a distinction between EMCI and LMCI, and 

in DX, this is not the case. Therefore, when subsets are made, EMCI and LMCI are taken together. DX 

also has a label: “MCI to Dementia”. This label represents the moment of progression and is used for 

subsets for RQ2 and RQ3.  
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  Research ID is unique for every subject and it makes it possible to track a subject over time, 

by combining different rows that belong to the same RID. VISCODE stands for the moment subjects 

visit the ADNI study. For example, m03 stands for 3 months after the first visit, and m12 stands for 12 

months after the first visit. This variable is represented by a string, but to make it possible to track a 

subject over time by VISCODE and RID, VISCODE is transformed to a factor in R.  

3.1.3 Feature Selection 

From the remaining 197 features, features regarding the volume of brain structures were selected. It is 

important that these brain structures are located in the medial temporal lobe since this lobe indicates 

the first abnormalities. As a result, the following six features were selected: Hippocampus, Ventricles, 

WholeBrain, Entorhinal Cortex, the Fusiform and MidTemp.  

  A correlation matrix is made from these features (Table 3.1.3.1) to see whether there are any 

highly correlated features. Generally, when the correlation between two features is higher than or 

equal to 0.75, those features should be removed. However, the correlation between MidTemp and 

WholeBrain is 0.76. This can be explained because the WholeBrain exists partially of MidTemp. 

 

Table 3.1.3.1 

Pearson correlation matrix of selected features 

 Hippoc. Ven. WholeB. Ent. Fusi. MidT. 

Hippoc. 1      

Ven. -0.25 1     

WholeB. 0.59 0.11 1    

Ent. 0.68 -0.14 0.51 1   

Fusi. 0.53 -0.06 0.73 0.56 1  

MidT. 0.58 -0.01 0.76 0.51 0.71 1 

All correlations higher than 0.75 are printed in bold. Abbreviations: Hippoc. = Hippocampus, Ven. = 

Ventricles, WholeB. = WholeBrain, Ent. = Enthornihal Cortex, Fusi. = Fusiform, MidT. = MidTemp. 

 

To use LR, all features have to be informative as discussed in subection 2.3. To test whether MidTemp 

and/or WholeBrain has to be excluded, recursive feature elimination with cross-validation is executed. 

This method makes a selection of the best features. When it turns out that this method does not include 

MidTemp and/or WholeBrain in the selection of best features, these/this feature(s) is left out. All six 

features are tested, and all of them are ranked as a valuable feature for predicting progression. 

Therefore, MidTemp and WholeBrain are used in the current study regardless of their correlation 

being 0.76. All features are discussed in subsections 3.1.2.1 to 3.1.2.6. See Table 3.1.3.2 for an 
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overview of the features that are relevant and used as a starting point for different subsets.  

 

Table 3.1.3.2 

An overview of selected  features 

Feature Range Type and measure Description 

RID  Label Participant ID (unique 

for every subject) 

VISCODE (bl, m03, m06, m12, 

m18, …, m132) 

Label Visit code  

DX.bl CN, SMC, EMCI, 

LMCI, AD 

Categorical Baseline Diagnosis 

DX NL, MCI, Dementia, 

NL to MCI, MCI to 

Dementia, NL to 

Dementia, Dementia to 

MCI, Dementia to NL 

Categorical Diagnosis on visit 

Hippocampus 2.219–11.207 mm³ Continuous Hippocampus 

Ventricles 5.650–162.729 mm³ Continuous Ventricles 

WholeBrain 649.091–1.486.036 

mm³ 

Continuous WholeBrain 

Entorhinal 1.041–6.711 mm³ Continuous Entorhinal Cortex 

Fusiform 7.739–29.950 mm³ Continuous Fusiform 

MidTemp 8.044–32.189 mm³ Continuous MidTemp 

Abbreviations DX.bl: CN =Clinical Normal, SMC = Significant Memory Concern, MCI =Mild 

Cognitive Impairment, EMCI= Early MCI, LMCI = Late MCI, AD = Alzheimer’s disease, 

Abbreviations DX: NL = Normal Controls, MCI =Mild Cognitive Impairment 

CN and NL are similar; there is no difference in criterion. SMC subjects indicated that they had 

concerns about their memory, but their scores are within the normal range for cognition. NL to MCI, 

MCI to Dementia, NL to Dementia, Dementia to MCI and Dementia to NL indicate moments of 

progression.  

 

3.1.3.1 Hippocampus 

The hippocampus feature gives insight into the volume in voxels of the hippocampus of the subject. 

The hippocampus is important for storing information in memory, orientation in space and controlling 

behavior that is important for survival. A damaged hippocampus can lead to a reduced ability to store 
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new information in memory. 

  As can be seen in Table 3.1.3.2, hippocampus is a continuous variable that ranges from 2.219 

to 11.207 mm³. In the following figures, every black line represents a unique subject within a group 

over time. The regression line in blue denotes the average course over time of all subjects together. 

Comparing A with B in Figure 3.1.3.1, where A represents subjects within stableMCI and B represents 

all subjects within progressionMCI, the regression line in blue indicates that the volume of the 

hippocampus of subjects in progressionMCI shrinks, whereas the volume of the hippocampus of 

subjects in stableMCI remains the same. 

A  B 

Figure 3.1.3.1. The volume of hippocampus over time for subjects in stableMCI (A) and that for 

subjects in progressionMCI (B). In both graphs, the x-axis represents the time in months, and the y-

axis represents the volume of the hippocampus in voxels. All black lines represent a unique subject 

within the class. The blue regression line illustrates the average course over time of all subjects 

together within a class. This Figure demonstrates that the volume of the hippocampus shrinks over 

time for progressionMCI, whereas it remains the same for stableMCI. 

 

3.1.3.2 Ventricles 

The Ventricles feature represents the volume in voxels of the Ventricles. Inside the brain, the 

Ventricles are four interconnected cavities, filled with cerebrospinal fluid (CSF). The Ventricles are 

also connected with the subarachnoid space, which is the space between the inner and middle 

meninges. The CSF that flows through the ventricles cleans the brain and also helps the brain with 

maintaining the right temperature.  

  This feature is also a continuous variable that ranges from 5.650 to 162.719 mm³, according to 

Table 3.1.3.2. Figure 3.1.3.2 indicates that the volume of the Ventricles increases over time for 

progressionMCI (B) steeper in comparison with stableMCI (A), which also exhibits a subtle increase 

of the volume of the Ventricles over time. This can be explained as follows: when the brain shrinks, 

the space within the cavities increases. 
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 A  B 

Figure 3.1.3.2. The volume of Ventricles over time for subjects in stableMCI (A) and that for subjects 

in progressionMCI (B). In both graphs, the x-axis represents the time in months, and the y-axis 

represents the volume of the hippocampus in voxels. All black lines represent a unique subject within 

a class. The blue regression line illustrates the average course over time of all subjects together within 

that class. This Figure demonstrates that the volume of the ventricles increases more for a subject in 

progressionMCI than for a subject in stableMCI 

 

3.1.3.3 WholeBrain 

The WholeBrain feature indicates the volume in voxels of a subject’s whole brain. The volume of the 

whole brain ranges from 649.091 to 1.486.036 mm³ (Table 3.1.3.2), and, as expected, the volume of 

the whole brain shrinks for subjects in progressionMCI. The volume of the whole brain in subjects in 

stableMCI also illustrates a subtle decline over time, as can be seen in Figure 3.1.3.3.  

 A  B 

Figure 3.1.3.3. The volume of WholeBrain over time for subjects in stableMCI (A) and that for 

subjects in progressionMCI (B). In both graphs, the x-axis represents the time in months, and the y-

axis represents the volume of the hippocampus in voxels. All black lines represent a unique subject 

within a class. The blue regression line denotes the average course over time of all subjects together 

within that class. This Figure demonstrates that the volume of the ventricles shrinks more for a 
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subject in progressionMCI than for a subject in stableMCI 

 

3.1.3.4 Entorhinal Cortex 

The Entorhinal Cortex feature indicates the volume in voxels of the Entorhinal cortex of the subject. 

The Entorhinal Cortex connects the temporal bark through the subiculum with circuits within the 

hippocampus. The Entorhinal Cortex is important for coding and storage of long-term information.  

  The range of this feature is from 1.041 to 6.711 mm³ (Table 3.1.3.2). Figure 3.1.3.4 indicates 

that there is a decline of the volume of Entorhinal Cortex in subjects in progressionMCI over time, 

whereas the volume remains the same for subjects in stableMCI.  

 

 A  B 

Figure 3.1.3.4. The volume of Entorhinal Cortex over time for subjects in stableMCI (A) and that for 

subjects in progressionMCI (B). In both graphs, the x-axis represents the time in months, and the y-

axis represents the volume of the hippocampus in voxels. All black lines represent a unique subject 

within a class. The blue regression line denotes the average course over time of all subjects together 

within that class. This Figure demonstrates that the volume of the ventricles decreases for a subject in 

progressionMCI, whereas it seems to remain the same for a subject in stableMCI. 

3.1.3.5 The Fusiform 

The Fusiform feature indicates the volume in voxels of a subject’s fusiform. The function of the 

Fusiform gyrus is not fully understood, but it has been linked with various neural pathways related to 

recognition. Additionally, it has been linked to various neurological phenomena such as synesthesia, 

dyslexia and prosopagnosia.  

  The range of this feature is between 7.739 and 29.950 mm³ (Table 3.1.3.2). As can be seen in 

Figure 3.1.3.5, the volume of the Fusiform shrinks over time in subjects who are in progressionMCI 
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and seems to remain the same in those in stableMCI. 

 

 A  B 

Figure 3.1.3.5. The volume of the Fusiform over time for subjects in stableMCI (A) and the volume 

of that for subjects in progressionMCI (B). In both graphs the x-axis represents the time in months, 

and the y-axis represents the volume of the hippocampus in voxels. All black lines represent a unique 

subject within a class. The blue regression line illustrates the average course over time of all subjects 

together within that class. This Figure demonstrates that the volume of the ventricles decreases for a 

subject in progressionMCI, whereas it seems to remain the same for a subject in stableMCI. 

 

3.1.3.6 MidTemp 

The MidTemp feature indicates the volume in voxels of the medial temporal lobe of a subject. Though 

the function of the Middle Temporal Gyrus is not known, it is linked with the recognition of known 

faces and accessing the meaning of words while one is reading.  

  The range of this feature’s volume is from 8.044 to 32.189 mm³, according to Table 3.1.3.2. 

Figure 3.1.3.6 illustrates a decline in volume over time in subjects in MCI to AD, and the volume of 

the MidTemp in subjects in MCI stable indicates no decline.  

 A  B 

Figure 3.1.3.6. The volume of MidTemp over time for subjects in stableMCI (A) and that for subjects 
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in progressionMCI (B). In both graphs, the x-axis represents the time in months, and the y-axis 

represents the volume of the hippocampus in voxels. All black lines represent a unique subject within 

a class. The blue regression line denotes the average course over time of all subjects together within 

that class. This Figure demonstrates that the volume of the ventricles decreases for a subject in 

progressionMCI, whereas it seems to remain the same for a subject in stableMCI. 

 

3.2 Missing Values 

An important step in data processing is data cleaning. The original data set is also used for other 

studies, and all clinical data are cleaned (ADNI Protocol, 2017). However, the number of missing 

values is high. This is due to several reasons, such as high measurement cost (PET scans), poor data 

quality and unwillingness of the patients to receive the invasive test (lumbar puncture) (Thung, Wee, 

Yap & Shen, 2015). As a result, all 12.734 rows from the original data set contain at least one missing 

value.  

  Most learning algorithms cannot deal with missing values (Billsus & Pazzani, 1998). Thung et 

al. (2015) suggested that there are two approaches to handling missing data: removing missing data 

and inputting missing data. In general, the data-inputting approach is more preferable as it enables 

using as many samples as possible for machine learning. A condition for this algorithm to recover a 

large proportion of missing values is that the missing data are distributed randomly and uniformly 

(Candès & Recht, 2012). However, in the ADNI data, this is not the case. Therefore, the list-wise 

deletion approach is used, which is also the default method for handling missing values (Allison, 

2012).  

  For the data set used in the current study, this means that all rows with at least one missing 

value in the subset that is denoted as Not Available (NA) were removed completely, according to the 

list-wise deletion approach, to prepare the data for the learning algorithm. This is done after feature 

selection because when the list-wise deletion approach is applied before feature and subset selection, 

there will be no rows left. After applying this approach, the subset contains no missing values. For the 

process of creating a subset, see Figure 3.2.1. 

  

Figure 3.2.1. The process of making a subset from a complete data set 

 

For the subset made for RQ1, this means that 100 AD subjects and 182 MCI subjects are excluded, 

complete  
dataset 

selection 
of 

subjects 

selection 
of 

features 

deleting 
missing 
values 

subset 
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which leaves us with 242 AD subjects and 690 MCI subjects at first visit. For RQ2 and RQ3, this 

means that for stableMCI, progression6MCI, progression12MCI, progression24MCI, 

progression30MCI and progression48MCI classes, 38, 22, 80, 0, 18 and 17 subjects are excluded, 

respectively. This leaves us with the following subjects: 446, 158, 125, 123, 61 and 35 for stableMCI, 

progression6MCI, progression12MCI, progression24MCI, progression30MCI and progression48MCI 

classes, respectively. For an overview, see Table 3.2.1.  

Table 3.2.1 

An overview of original, deleted and final subjects for the different classes 

RQ Class Original subjects Excluded subjects Included subjects 

RQ1 MCI 872 182 690 

 AD 342 100 242 

RQ2/RQ3 stableMCI 484 38 446 

 Progression6MCI 180 41 139 

 Progression12MCI 205 80 125 

 Progression24MCI 173 50 123 

 Progression30MCI 79 18 61 

 Progression48MCI 52 17 35 

Abbreviations: MCI = Mild Cognitive Impairment, AD = Alzheimer’s disease 

For every class, except stableMCI, the number of subjects is equal to the number of observations.  

3.3 Imbalanced Data 

For the binary-classification task, the imbalanced data problem is tackled as suggested by Kotsiantis, 

Kanellopoulos and Pintelas (2006), Chawla (2005) as well as Weiss, McCarthy and Zabar (2007). The 

authors stated that a combination of oversampling and undersampling achieved the best performance 

of a classifier, as discussed in subection 2.5. By considering the caution made by Agrawal et al. (2005) 

that too much oversampling may result in overfitting, no more than 100% of new instances are 

created.  

  For the multiclass-classification task, the imbalanced data problem is tackled using the SCUT 

algorithm suggested by Agrawal et al. (2005), as discussed in subection 2.5.  

3.4 The Evaluation Method  

To avoid the accuracy paradox, since there is large class imbalance, the classifiers used in the current 

study are evaluated by their F1 score (Chawla, 2005). The F1 score is a harmonious mean between 

precision and recall.   
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  There is an important difference between precision and recall. Having high precision means, in 

the current study, that when a model predicts that a subject will convert into AD, the model is usually 

right about that. This is about how many predicted converters are actually converters. In the current 

study, having high recall means that a model is able to identify most of the converters out there. This 

is about how many converters the model was able to predict out of all the converters out there. For 

example, the model predicted that 20 subjects would convert. All these 20 subjects are actually 

converters, meaning that the precision is 100%. However, the model missed 500 other subjects who 

are also converters. In this case, the score for recall would be very low.  

  Ideally, the model should predict all converters out there while being careful not to predict that 

a subject will convert when it actually will not. This model should have high precision and high recall. 

Since it is more useful to have a single number to describe the performance, the mean of precision and 

recall is used, which is the F1 score. The F1 score is between 0 and 1: the closer the score is to 1, the 

better. See Table 3.4.1 for how the F1 score is calculated.  

Table 3.4.1 

Calculation of the F1 score 

Concepts Definitions and calculations  

True Positives (TP): the number of positive examples, labeled as such. 

False Positives (FP): the number of negative examples, labeled as positive. 

True Negatives (TN): the number of negative examples, labeled as such. 

False Negatives (FN): the number of positive examples, labeled as negative. 

Precision TP / (TP + FP) 

Recall TP / (TP + FN) 

F1 score 2 × (precision × recall) / (precision + recall) 

 

There are three different methods of calculating the F1 score: micro, macro and weighted. F1-micro 

score is computed using the global count of true positives and false negatives, so no distinction 

between classes is made. To calculate the F1-macro score, the average of F1 scores for each class is 

computed. To compute the F1 weight, the average of the F1 score for each class is computed, but the 

weight is attached to the F1 score by the support of a class: the more elements in the class, the more 

important the F1 score will be in computing the average for this class.  

  Taken together, the F1-micro score is a measure of effectiveness of the majority of classes in a 

test collection. To gain insight into the effectiveness of all classes, the F1-macro or F1-weighted score 

should be computed (Manning et al., 2008). Since the data used for the current study is imbalanced, 

and the majority class is not more important than the minority class, the F1-macro score is computed 

and evaluates the classifiers.  



35 
 

3.5 Software  

All data pre-processing, including making subsets, selecting features, deleting missing values, and 

applying SMOTE, was done using the programming language R in Rstudio (version 1.0.136). The 

following R packages were used: Hmisc for loading the data set, Plyr and Dplyr for performing 

manipulations for the subsets, ggplot for making plots and the DMwR package for applying SMOTE. 

All steps that belong to machine learning were taken using the programming language Python in 

PyCharm (edition 2016.3.2). The following modules were used: numpy for converting the features 

into the right format; Train_test_split and cross_Val_score, StratifiedKfold from sklearn model 

selection for cross-validation; RFECV from sklearn feature selection for ranking the most informative 

features; StandardScaler, MinMaxScaler and PolynomialFeatures from sklearn preprocessing for 

applying pre-processing methods on the data; Accuracy_score, f1_score, recall_score, precision_score 

and consufsion_matrix from sklearn metrics for evaluating the performance of a classifier; Stats from 

scipy for conducting the mcnemar test; DummyClassifier from the sklearn dummy for comparing the 

performance of the classifier with that of a Dummy classifier; as well as SGDClassifier, Logistic 

Regression and Perceptron from the sklearn linear model, LinearSVC and SVC from sklearn svm, and 

DecisionTreeClassifier from the sklearn tree for the classifiers used in the current study. 

3.6 Experimental Procedure 

This section gives per research question a description of the experiments done in order to answer the 

question.  

3.6.1 Experimental Procedure for Answering RQ1: Model Selection 

This experimental procedure was set up to find the classifier that performs best in distinguishing MCI 

from AD at baseline and eventually reuse this learning algorithm throughout the current study. 

 

Step 1: Splitting a subset into a training set and a test set 

Prior research indicated that the most common splits for training, validation and test data are ratios 

such as 50/25/25, 60/20/20, 70/15/15 and 80/10/10 (Raykar & Saha, 2015). According to Tan and 

Wong (2017), most researchers have applied the ratio of 70/15/15. The current study follows the 

majority by also dividing the data at the ratio of 70/15/15. 

  

The subset created for RQ1 in Subsection 3.1.1 consists of 932 subjects in total, which are divided into 

242 AD subjects and 690 MCI subjects. The proportion of the two classes in the subset for RQ1 is 

26:74 for AD to MCI, which is highly unbalanced. Since it is important that the test set contains the 

same ratio between MCI and AD, as it is in the original data, a fixed number of AD and MCI subjects 
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are randomly selected for the test set to ensure this ratio.  

  This subset is split into a training (85%) and a test set (15%). This means that the test set 

contains a total of 139 subjects (15% of total subset), with 103 MCI and 36 AD subjects, to keep the 

proportion at 26:74. This test set is set apart and is not used until step 55.  

  The subjects who are not selected for the test set are automatically in the training set. For steps 

2 and 3, this training set is divided into training and validation sets to find the best pre-processing 

method and optimal parameters for each classifier.  

Step 2: SMOTE on training set 

As mentioned in Subsection 3.2, SMOTE is applied to the training set. The parameters for SMOTE are 

set to 100 for perc.over, to make the quantity of the minority class twice as much. The parameter 

perc.under is set to 200 to remove at most half of the majority class and make the data balanced. 

These settings of perc.over and perc.under are used in prior research (Hao, Wang & Bryant, 2014). 

The latter step is a form of undersampling.  

            Important to note is that each time SMOTE is applied, the synthesized data calculated for the 

minority class by SMOTE and the samples removed from the majority class are different (Mashayekhi 

& Gras, 2012). To discover whether this has any effect, SMOTE is applied five times to the training 

set. As a result, five different training sets are developed. After SMOTE is applied, the training set is 

split into training and validation data. Table 3.6.1.1 gives insight into the number of observations for 

training and the test set.  

Table 3.6.1.1 

An overview of subjects for RQ1 in the test set and the training set before and after SMOTE  

 Test set Training set (before SMOTE) Training set (after SMOTE) 

 MCI AD MCI AD MCI AD 

Subjects 103 36 587 206 412 412 

Abbreviations: MCI = Mild Cognitive Impairment, AD = Alzheimer’s disease 

  

Step 3: Selecting a pre-processing method for each classifier 

The goal of this step is to prepare the data in such a manner that they best support the classifier. The 

classifiers that the current study investigates are as follows: DTC, LSVC, LR, PER, SGD and SVC. In 

this step, all parameters of the classifier are set to default, since the tuning is in step 4. The pre-

processing strategies that are tested for all classifiers can be seen in Table 3.6.1.2.  

Table 3.6.1.2 

Pre-processing methods investigated by the current study 
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Number Pre-processing method  Description Used by 

1.  No pre-processing No transformation is 

performed 

 

2.  Z-score / Standardization Transforming features by 

centering them, i.e. by 

removing the mean value of 

each feature. 

 

3.  Normalization Scaling the features 

between 0 and 1 

 

4.  Adding feature interactions Adding polynomial feature 

interactions in which new 

features are defined* 

Li et al. (2014) 

* This is a different sort of a pre-processing method in comparison with standardization and 

normalization 

 

To limit overfitting, cross-validation is used on the training set. The cross-validation method used is 

StratifiedKFold, which is a cross-validation method that splits data into k folds, with an equal number 

of examples in each fold. What makes StratifiedKFold different from the standard K fold is that each 

subject is exactly one time in the validation set. In the standard K fold, this process is random, and it 

could occur that one subject is in the validation set multiple times. Prior research indicated that the 

cross-validation method StratifiedKFold performs better than standard cross-validation methods in 

terms of bias and variance (Sechidis, Tsoumakas & Vlahavas, 2011).  

Since the current study strives towards a ratio of 70/15/15 for training, validation and the test set, 

respectively, the number selected for k is 5. In this case, 85% of the total data are split into 5 equal 

folds, where for each iteration’s 4 folds represent the training data, and 1 fold represents the validation 

data. The exact ratio between training, validation and test set is 68/17/15. As can be seen in Figure 

3.6.1.1, the classifiers are trained with cross-validation. StratifiedKFold = 5 is used for each of the five 

training sets. The test set is held apart from the training set and is not used in this part of the 

experiment.  

 

A boxplot of all the F1 scores together is created for all five training sets to gain insight into the effect 

of SMOTE on performance. Thereafter, for each classifier, a boxplot with corresponding pre-

processing methods is created, since it easily gives insight into pre-processing types and classifiers 

they fit best. The pre-processing method with the highest median for the F1 score is selected. Once the 

pre-processing step is selected for each classifier, this will remain the same for the rest of this study. 

  Kfold X Kfold X Kfold X Kfold X Kfold Ja    X   Kfold  
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IT 4                 
                 
IT 5                 
 

Figure 3.6.1.1. Overview of training fase on each training set, by means of cross-validation. 

Training set consist of 85% of the data and the test set consist of the remaining 15%. The test 

set held apart and is not used. 

Abbreviation: IT = iteration.  

  

Step 4: Tuning parameters of each classifier  

Once the pre-processing step is selected, the parameters of the classifiers will be tuned. In this step, the 

goal is to find the best parameters of the classifiers. The parameters that will be adjusted can be seen in 

Table 3.6.1.3, which also shows how many combinations are tried for each classifier. To be able to 

reproduce the experiments, all classifiers are given a random state of 0. Once the parameters are 

selected for each classifier, they will remain the same for RQ2 and a part of RQ3.  
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Table 3.6.1.3 

Overview of parameters and corresponding values to be tuned  for each classifier   

Classifier Parameters Number of 

combinations 

DTC Criterion: ‘gini’, ‘criterion’ 

Splitter: ‘best’, ‘random’ 

4 

 

LSVC 

 

C: 0.001, 0.5, 1, 10, 100, 1000 

Multi_class: ‘ovr’, ‘crammer_singer’ 

Fit_intercept: True, False 

Intercept_scaling: 0.5, 1, 2, 10 

Loss: ‘hinge’, ‘squared_hinge’ 

Penalty: ‘l1’, ‘l2’ 

Tol: 0.01, 0.001, 0.0001, 0.0001 

 

1536 

 

LR 

 

Penalty: ‘l1’, ‘l2’ 

C: 0.001, 0.5, 1, 10, 100, 1000 

Class_weight: None, ‘balanced’ 

Solver: ‘liblinear’, ‘newton-cg’, ‘lbfgs’, ‘sag’ 

Multi_class: ‘ovr’, ‘multinomial’ 

 

192 

 

PER 

 

Penalty: ‘none’, ‘l2’, ‘l1’, ‘elastiCNet’ 

Alpha: 0.0001, 0.0003, 0.0005, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3 

Fit_intercept: True, False 

N_inter: 5, 10, 15, 20, 25, 50 

eta0: [[10 ** x for x in range(-5, 00)]] 

 

2160 

 

SGD 

 

Loss: ‘hinge’, ‘log’, ‘modified_huber’, ‘squared_hinge’, 

‘perceptron’, 

Penalty: ‘none’, ‘l2’, ‘l1’, ‘elastiCNet’ 

Alpha: 0.0001, 0.0005, 0.001, 0.005, 0.01 

Fit_intercept: False, True 

eta0: [[10 ** x for x in range(-5, 00)]] 

 

3000 

 

SVC 

 

C: 0.001, 0.5, 1, 10, 100, 1000 

Kernel: ‘rbf’, ‘linear’ 

 

576 
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Tol: 0.01, 0.001, 0.0001, 0.0001 

Decision: ‘ovo’, ‘ovr’, None 

Gamma: 0.01, 0.001, 0.0001, ‘auto’ 

Abbreviations: DTC = Decision-Tree classifier, LSVC = linear Support-Vector classifier, LR = 

Logistic Regression, PER = Perceptron, SGD = Stochastic Gradient-Descent classifier, SVC = 

Support-Vector classifier. 

 

As for step 3, problems such as overfitting need to be limited. For this step, training set 1 is reused 

from the previous step. StratifiedKFold is applied again on this training set (see Figure 3.6.1.2). For 

each iteration, parameters that provide the highest F1 score are stored. When all 5 iterations are 

completed, the parameters that appear the most are chosen for the classifiers.  
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Figure 3.6.1.2. An overview of cross-validation on training data. The training set consists of 85% of 

the data, and the test set consists of the remaining 15%. The test set held apart and is not used. 

Abbreviation: IT = iteration.  

  

Step 5: Selecting the final classifier for following research questions 

The classifier with the highest F1 score in step 4 is the classifier that is used for the coming research 

questions. To gain insight into how this model performs on unseen data, the model is used on the test 

set which have been isolated in step 1. Now, the model is trained on the full training data (see Figure 

3.6.1.3). After training, the model is applied on the test set. To evaluate the performance on separating 

MCI subjects from AD subjects, the accuracy, F1 score, recall and precision are calculated. This gives 

insight into how this model performs on new data in terms of overfitting and compared to prior 

research.  
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  Kfold X Kfold X Kfold X Kfold X Kfold Ja    X   Kfold  
 X                        Training data (85%) 

 
     Test set 

Final classifier:                 
 
Figure 3.6.1.3. An overview of the training phase on all training data. The model is tested on 

the test set.  

 

3.6.2 Experimental Procedure for Answering RQ2: Binary Classification 

(Predicting Progression) 

This experimental procedure is set up to examine how this classifier performs on five binary-

classification problems, by distinguishing stableMCI from different progressionMCIs, to gain insight 

into the potential of increasing complexity to distinguish these classes as the moment of progression is 

further away in time.  

Step 1: Splitting all subsets in the training set and the test set 

For answering RQ2, five subsets are made as described before in Subsection 3.1.1: stableMCI and 

progression6MCI, stableMCI and progression12MCI, stableMCI and progression24MCI, stableMCI 

and progression30MCI as well as stableMCI and progression48MCI.  

  The ratio of the training set to the test set is set at 85%:15%, for the same reason as that 

described in Subsection 3.6.1. Besides that, the ratio between the two classes presented in the original 

data is also be the ratio of the training set to the test set. Therefore, a fixed number of subjects from 

each group is randomly selected for the test set. See Table 3.6.2.1 for the split between the training and 

test sets, with the same ratio in both training and test set.  

Table 3.6.2.1. 

An overview of subjects for RQ2 in the test set and training set before SMOTE  

                               Test set   Training set (before SMOTE)  

# sMCI p#MCI sMCI p#MCI   

6 67 21 379 118   

12 67 19 379 106   

24 66 19 380 104   

30 68 8 378 53   

48 67 5 379 30   

Abbreviations:sMCI = stableMCI, p#MCI = progression#MCI, where # stands for a number in the 

column with name ‘#’.  

 

Step 2: SMOTE on training set  
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As mentioned in Subsection 3.2, SMOTE is applied to the training set. As for experiment 1, the 

parameters for SMOTE are set to 100 for perc.over, to make the size of the minority class twice as 

large. The parameter perc.under is set to 200, to remove at most half of the majority class and make 

the data balanced. These settings of perc.over and perc.under are used in prior research (Hao, Wang & 

Bryant, 2014). The latter step is a form of undersampling. See Table 3.6.2.2 for an overview of 

subjects in training set before and after SMOTE.  

 

Table 3.6.2.2. 

Overview of subjects for RQ2 training set before and after SMOTE 

 Training set (before SMOTE) Training set (after SMOTE) 

# sMCI p#MCI sMCI p#MCI 

6 379 118 236 236 

12 379 106 212 212 

24 380 104 208 208 

30 378 53 106 106 

48 379 30 60 60 

 Abbreviations:sMCI = stableMCI, p#MCI = progression#MCI, where # stands for a number in the 

column with name ‘#’. 

 

Step 3: Determining F1 scores 

For each subset made for RQ2, the optimized classifier chosen in the last step of experiment 1 is 

trained on the training data and tested on the test set, as can be seen in Figure 3.6.2.1. To evaluate the 

performance of classifying stableMCIs and progressionMCIs, the accuracy, F1 score, recall and 

precision are calculated. This gives insight into how this model performs on new data and the 

complexity of different classification problems.  

        
  Kfold X Kfold X  X Kfold X Kfold Ja    X   Kfold  
                         Training data (85%) 

 
     Test set 
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X             Training    
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sMCI and p30MCI                 
X                 
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Figure 3.6.2.1. An overview of the training phase on all training data. The model is tested on the 



44 
 

corresponding test set. 

 

3.6.3 Experimental Procedure for Answering RQ3: Multiclass Classification I 

(Predicting Progression and Its Corresponding Moment) 

In this experiment, a multiclass classification is set up. The classes consist of stableMCI, 

progression6MCI, progression12MCI, progression24MCI, progression30MCI and 

progression48MCI.  

 

Step 1: Splitting all subsets in the training and test set 

As for RQ1, 15% of the data are the test set, and the remaining part is training set (85%), which will 

be divided into validation and training sets. See Table 3.6.3.1 for an overview of the subjects.  

Table 3.6.3.1 

An overview of subjects for RQ3 in the test and training sets before SMOTE 

 sMCI p6MCI p12MCI p24MCI p30MCI p48MCI Total 

TOTAL 446 139 125 123 61 35 929 

Percentage  0.48 0.15 0.13 0.13 0.07 0.04 1 

Training (85%) 379 118 107 106 51 29 790 

Test (15%) 67 21 18 17 10 6 139 

Abbreviations: sMCI = stableMCI, p6MCI = progression6MCI, p12MCI = progression12MCI, 

p24MCI= progression24MCI, p30MCI = progression30MCI, p48MCI = progression48MCI. 

 

Step 2: SMOTE on the training set 

Because this is a multiclass-classification task, the SCUT algorithm is applied. The average of all six 

classes in the training set is 132. This means that oversampling is first applied to progression6MCI, 

progression12MCI, progression24MCI, progression30MCI and progression48MCI in such a manner 

that a class contains 132 subjects after SMOTE has been applied. Undersampling is applied to 

stableMCI. In the end, each class in the training set contains exactly 132 subjects. 

 

Step 3: Determining F1 scores 

The goal of this step is to gain insight into the performance of the model from RQ1 and RQ2 on this 

multiclass-classification task. This is obtained by conducting a StratifiedKFold cross-validation on the 

training set with k = 5 (see Figure 3.6.1.1).  

 

  Kfold X Kfold X Kfold X Kfold X Kfold Ja    X   Kfold  
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Figure 3.6.1.1. An overview of the cross-validation of the training set and test set. The training set 

consists of 85% of the data, and the test set consists of the remaining 15%. 

Abbreviation: IT = iteration.  

  

Step 4: Parameter tuning 

Since multiclass classification is a different problem from binary classification, the optimal parameters 

for the final classifier are sought after. The parameters that are tuned are the same parameters as those 

seen in Table 10. This is done by conducting StratifiedKFold cross-validation on the training set, with 

k = 5, to minimize overfitting. These F1 scores are compared to the F1 scores from step 3. 
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Figure 3.6.3.2. An overview of the cross-validation of training data and the test set. The training set 

consists of 85% of the data, and the test set consists of the remaining 15%. 

Abbreviation: IT = iteration.  

  

Step 5: Comparing an optimized classifier to a Dummy classifier 
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Now, the classifier is optimized, and the performance of the model on unseen data is tested. The model 

is trained on all training data. A Dummy classifier, which generates predictions uniformly at random, 

is also trained on the same training data, and the difference in performance is compared (see Figure 

17). The difference in performance is tested for significance according to the McNemar Test. 

Comparing the performance of both methods may indicate whether the final classifier has failed to 

achieve a reasonable performance on predicting AD (Musafa, Kraft & Krüger, 2015).  

  Kfold X Kfold X Kfold X Kfold X Kfold Ja    X   Kfold  
 X                                Training data 

 
     Test set 

Final classifier                 
                 
Dummy classifier                 
 

Figure 3.6.3.3. An overview of the training phase on all training data. The model is tested on the 

test set. Training data and the test set are the same for both classifiers.  

 

3.6.4 Experimental Procedure’s Follow-up 1: Multiclass Classification II 

(Predicting the Moment of Progression) 

Based on the results from Experimental Procedure 3, a follow-up study is conducted to investigate the 

extent to which the classifier could make a multiclass distinction among progression6MCI, 

progression12MCI, progression24MCI, progression30MCI and progression48MCI. This allows for an 

investigation of whether a classifier is able to predict the moment of progression. 

Step 1: Splitting all subsets in the training and test sets 

As for the previous experimental procedures, the subset is split into a training set (85%) and a test set 

(15%). A total of 483 observations are in this subset. Seventy-two observations are selected for the test 

set, in the same ratio as in the total set, which can be seen in Table 3.6.4.1.   

Table 3.6.4.1 

An overview of subjects for RQ3 in the test and training sets before SMOTE 

 p6MCI p12MCI p24MCI p30MCI p48MCI Total 

Subjects 139 125 123 61 35 483 

Percentage 0.29 0.26 0.25 0.13 0.07 1 

Training 

(85%) 

118 106 105 52 30 411 

Test (15%) 21 19 18 9 5 72 

Abbreviations:p6MCI = progression6MCI, p12MCI = progression12MCI, p24MCI= 

progression24MCI, p30MCI = progression30MCI, p48MCI = progression48MCI.  
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Step 2: SCUT on training data 

Because this is a multiclass-classification task, the SCUT algorithm is applied. The average size of all 

five classes in the training data is 82. This means that oversampling is first applied to 

progression30MCI and progression48MCI in such a manner that the classes contain 82 subjects after 

SMOTE has been applied. Undersampling is applied to progression6MCI, progression12MCI and 

progression24MCI. In the end, each class in the training set contains exactly 82 subjects. 

Step 2: Determining F1 scores 

The optimized model from experiment 3 is also used in the follow-up experiment. This model is 

trained on the training set, and the learning algorithm will then be tested on the test set. This is also 

done with a Dummy classifier (see Figure 3.6.3.4). Comparing the performance of both methods may 

indicate whether the classifier has failed to achieve a reasonable performance in predicting AD 

(Musafa, Kraft & Krüger, 2015).  

  Kfold X Kfold X Kfold X Kfold X Kfold Ja    X   Kfold  
 X                                Training data 

 
     Test set 

Final classifier                 
                 
Dummy classifier                 
 
Figure 3.6.3.4. An overview of the training phase on all training data. The model is tested on the 

test set. Training data and the test set are the same for both classifiers. 
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Section 4: Results  

This section provides the results of the conducted experiments. It starts with the results of experiment 

1 in Subsection 4.1, which seeks for the classifier that performs best in distinguishing MCI subjects 

from AD subjects at baseline. After this, in Subsection 4.2, the results of experiment 2 are provided, 

which examines the extent to which this classifier is able to make a binary distinction between 

stableMCI and progressionMCI, as the moment of progression differs. Subsection 4.3 provides the 

results of experiment 3, which investigates the extent to which the optimized classifier is able to 

predict whether and when a subject is likely to progress to AD. Finally, Subsection 4.4 presents the 

result of the follow-up experiment, which is an investigation of the extent to which the optimized 

classifier is able to predict when a subject is likely to progress to AD.  

4.1 Result of Experiment 1: Model Selection 

To select the best-performing classifier on the classification task between MCI and AD subjects, the 

extent to which the random factor in SMOTE has an effect on the F1 score is first examined. Figure 

4.1.1 compares the average F1 scores of all five training sets for each classifier. Overall, the random 

factor in SMOTE did not affect the F1 score to a large extent, except for LSVC and SGD with a pre-

processing method that added feature interactions. From here on, a random state for SMOTE is chosen 

(seed = 1) to reproduce the events. 

 

  

Figure 4.1.1. Comparison of F1 scores of all classifiers.  
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Abbreviations: DTC = Decision-Tree classifier, SVC = Support-Vector classifier, LSVC = linear 

Support-Vector classifier, SGD = Stochastic Gradient Descent, LR = Logistic Regression, PER = 

Perceptron, 0 = no pre-processing method, 1 = normalizing, 2 = standardizing, 3 = adding feature 

interactions.  

 

In the next part of the experiment, the pre-processing steps were selected for each classifier. The 

selected pre-processing method for the DTC added feature interactions, because the median was the 

highest for this method, as can be seen in Figure A.1 in the appendices. The selected pre-processing 

method for the SVC, LSVC, SGD, LR and PER is normalizing, since this method had the highest 

median for these classifiers, as can be seen in Figures A.2 to A.6 in the appendices.  

 

The following part of the experiment sought for the optimal parameters of each classifier with the 

selected pre-processing method, according to Table 3.6.1.1. Table 4.1.1 presents the optimal 

parameters for each classifier and the average F1 score achieved based on cross-validation. 

Table 4.1.1 

Tuned parameters for each classifier and its F1 score based on cross-validation 

Classifier Averaged 

F1 Score 

(out of 5) 

Best parameters 

Decision-Tree classifier 0.82 ‘gini’, ‘best’ 

Support-Vector classifier  0.83 1000, ‘rbf’, 0.01, ‘ovo’, ‘auto’ 

Linear Support-Vector classifier 0.75 10, ‘ovr’, True, 2, ‘squared_hinge’, ‘l2’, 0.01 

Logistic Regression 0.75 ‘l1’, 1, None, ‘liblinear’, ‘ovr’ 

Perceptron 0.75 ‘l2’, 0.0001, True, 5, 1e-05 

Stochastic Gradient Descent 0.78 ‘hinge’, ‘none’, False, 5, 1e-05, 0.005 

 

 

Figure 4.1.2 gives an overview of the aforementioned averaged F1 score of each classifier (Table 

4.1.1) with the selected pre-processing method and tuned parameters. All classifiers perform well, but 

the DTC and the SVC are worth investigating since they have achieved the highest scores. Because the 

SVC has a higher upper quartile and has a better averaged F1 score in comparison with the DTC, the 

SVC is selected for use throughout the current study. 
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Figure 4.1.2. Boxplot comparing F1-macro results of classifiers, based on cross-validations.  

Abbreviations: DTC = Decision-Tree classifier, SVC = Support-Vector classifier, LSVC = linear 

Support-Vector classifier, SGD = Stochastic Gradient Descent, LR = Logistic Regression, PER = 

Perceptron. 

 

The SVC, with parameters tuned according to Table 4.1.1, is then tested on the test set. The results are 

presented in Table 4.1.2.  

Table 4.1.2 

F1 score on the test set for RQ1 

F1 score Accuracy Recall Precision 

0.76 0.79 0.80 0.74 

 

4.2 Result of Experiment 2: Binary Classification (Predicting Progression) 

The purpose of this experiment was to examine how the SVC performs on five binary-classification 

problems, by distinguishing stableMCI from different progressionMCIs. The SVC with tuned 

parameters (1000, ‘rbf’, 0.01, ‘ovo’, ‘auto’) and pre-processing method normalization was trained on 

each training set. After the training had been completed, the model was tested on the test set. As can 

be seen in Table 4.2.1, the closer to the moment of progression, the higher the accuracy. Concerning 

the F1 score, there seems to be a drop of performance from progression24MCI to progression30MCI.  
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Table 4.2.1 

RQ2: Overview of F1 scores, accuracy, recall and precision of different subsets on test set 

Classes F1 score Accuracy Recall Precision 

sMCI and p6MCI 0.66 0.77 0.65 0.68 

sMCI and p12MCI 0.68 0.76 0.71 0.67 

sMCI and p24MCI 0.63 0.71 0.66 0.62 

sMCI and p30MCI 0.48 0.66 0.53 0.51 

sMCI and p48MCI 0.54 0.72 0.57 0.52 

Abbreviations: sMCI = stableMCI, p6MCI = progression6MCI, p12MCI = progression12MCI, 

p24MCI = progression24MCI, p30MCI = progression30MCI, p48MCI = progression48MCI 

4.3 Result of Experiment 3: Multiclass Classification I (Predicting Progression 

and Its Corresponding Moment)  

The goal of this experiment was to investigate the extent to which the optimized classifier performed 

on multiclass classification to be able to predict whether and when a subject is likely to progress to 

AD. First, the SVC with tuned parameters (1000, ‘rbf’, 0.01, ‘ovo’, ‘auto’, None) and pre-processing 

method normalizing was trained on the training set and evaluated on the validation set. The results can 

be seen in Table 4.3.1.  

 

 

Table 4.3.1 

An overview of F1 score, accuracy recall, and precision for the SVC with cross-validation 

 Kfold F1 score Accuracy Recall Precision 

 

 

 

1 0.35 0.35 0.35 0.36 

2 0.36 0.37 0.37 0.36 

3 0.33 0.32 0.32 0.35 

4 0.37 0.41 0.41 0.38 

5 0.39 0.41 0.41 0.38 

 Average  0.36 0.37 0.37 0.37 

Abbreviation: SVC = Support-Vector classifier. 

Parameters for SVC are 1000, ‘rbf’, 0.01, ‘ovo’, ‘auto’, and None 

 

Hereafter, through cross-validation on the training set, the optimal parameters for this multiclass-

classification task are examined. These optimal parameters for each cross-validation can be seen in 

Table 4.3.2. The most common settings are 100, ‘rbf’, 0.01, ‘ovo’, and ‘auto’ for the parameters c, 
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kernel, tol, decision_function_shape and gamma, respectively. These optimized parameters are slightly 

different from the parameters used in RQ1 and RQ2, and the model achieved a slightly better F1 score 

on average.   

Table 4.3.2. 

An Overview of best parameters for the SVC with cross-validation 

Kfold F1 score C Kernel Tol DFS gamma 

1 0.36 100 ‘rbf’ 0.01 ‘ovo’ ‘auto’ 

2 0.36 0.5 ‘rbf’ 0.01 ‘ovo’ ‘auto’ 

3 0.33 1000 ‘rbf’ 0.01 ‘ovo’ ‘auto’ 

4 0.39 0.001 ‘rbf’ 0.01 ‘ovo’ ‘auto’ 

5 0.39 100 ‘rbf’ 0.01 ‘ovo’ ‘auto’ 

Average / most 

common 

0.37 100 ‘rbf’ 0.01 ‘ovo’ ‘auto’ 

Abbreviation: DFS = decision_function_shape 

 

This optimized model (SVC with optimized parameters (100, ‘rbf’, 0.01, ‘ovo’, ‘auto’) and pre-

processing method normalization) is trained on all the training data and tested on the test set. To be 

able to compare this performance, a Dummy classifier is also trained on the same training set and 

tested on the same test set. The differences in performance between the optimized model and the 

Dummy classifier can be seen in Table 4.3.3. The McNemar test is conducted to compare both 

performances. This table demonstrates that the SVC has higher scores in terms of F1 score, accuracy, 

recall and precision in comparison with a Dummy classifier, which is significant at the p < 0.001 level.  

Table 4.3.3 

The final performance of predicting progression and the moment it occurs  in comparison with 

Dummy classifier 

 F1 score Accuracy Recall Precision 

SVC* 0.26 0.35 0.26 0.29 

Dummy classifier (strategy = “uniform”)* 0.12 0.16 0.13 0.16 

* difference is significant (McNemar test: p = 0.0002) 

 

Table 4.3.4 compares the F1 score, recall and precision for each class separately. This table is 

revealing in several ways. First, it supports the idea that it is harder for the classifier to classify 

subjects of whom the progression moment is further away in time. Second, for stableMCI and 

progression6MCI, the model performs better on precision. For the other classes, it performs better on 

recall. Third, most notable is that the highest score for both recall and precision is achieved by the 



53 
 

stableMCI class. The F1 score for the stableMCI class is higher than those of other classes.  

 

Table 4.3.4 

RQ3: F1 score, recall, and precision for each class on the test set 

 sMCI p6MCI p12MCI p24MCI p30MCI p48MCI 

F1 score 0.59 0.39 0.23 0.21 0.14 0.10 

recall 0.48 0.33 0.17 0.23 0.20 0.17 

precision 0.78 0.47 0.10 0.18 0.11 0.07 

Abbreviations: sMCI = stableMCI, p6MCI = progression6MCI, p12MCI = progression12MCI, 

p24MCI = progression24MCI, p30MCI = progression30MCI, p48MCI = progression48MCI 

4.4 Results of Follow-up 1: Multiclass Classification II (Predicting the Moment 

of Progression)  

Since the F1 score for the stableMCI class was considerably higher in comparison with those for the 

other classes, these results suggest that the SVC performed better than the Dummy classifier because it 

could classify stableMCI subjects well. A follow-up experiment is conducted to investigate the extent 

to which the optimized classifier performs on a multiclass-classification task when the classifier only 

predicts the moment of progression. The stableMCI class, which was included in experiment 3, is left 

out.  

  To compare the performance of the classifier, the optimized SVC is compared to a Dummy 

classifier. As illustrated in Figure 4.4.1, the optimized SVC performs similarly to the Dummy 

classifier on F1 score, recall and precision.  

Table 4.4.1 

Follow-up 1: F1 score, accuracy, recall and precision on the follow-up on the test set 

 F1 score Accuracy Recall Precision 

SVC* 0.15 0.18 0.15 0.13 

Dummy Classifier (strategy = 

“uniform”)* 

0.18 0.18 0.18 0.17 

* Difference is not significant (McNmar test: p-value = 0.17) 
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The F1 score, recall and precision for each separate class are compared in Table 4.4.2. It is apparent 

from this table that the classifier performs poorly in predicting progression24MCI and 

progression30MCI subjects.  

 

Table 4.4.2 

F1 score, recall, and precision for each class’s follow-up test 

 p6MCI p12MCI p24MCI p30MCI p48MCI 

F1 score 0.29 0.24 0.06 0 0.15 

recall 0.33 0.21 0.07 0 0.13 

precision 0.26 0.27 0.07 0 0.13 

Abbreviations: p6MCI = progression6MCI, p12MCI = progression12MCI, p24MCI = 

progression24MCI, p30MCI = progression30MCI, p48MCI = progression48MCI 

 

To gain more insight into how this result was achieved for the different classes, a confusion matrix 

was calculated (Table 4.4.3). Note that when the classifier made a wrong prediction, the prediction 

was frequently made in the direction of the surrounding classes. As an example: the classifier 

accurately classified progression12MCI subjects four times. When the predicted subjects of the 

surrounding classes (progression6MCI and progression24MCI) are added, this number increases to 18 

(10 + 4 + 4) for recall and 12 (2 + 4 + 6) for precision. 

Table 4.4.3 

Confusion matrix follow-up 

   Predicted label   

  p6MCI p12MCI p24MCI p30MCI p48MCI 

 p6MCI 7 2 6 3 3 

True p12MCI 10 4 4 0 1 

label p24MCI 5 6 1 4 2 

 p30MCI 3 3 2 0 1 

 p48MCI 2 0 1 1 1 

Abbreviations: p6MCI = progression6MCI, p12MCI = progression12MCI, p24MCI = 

progression24MCI, p30MCI = progression30MCI, p48MCI = progression48MCI 

A correct predicted label is in bold. 

 

To investigate the aforementioned pattern, a post-hoc analysis is conducted. In this post hoc analysis, 

two new confusion matrices are calculated to investigate how much the accuracy would increase when 

the surrounding classes are added to the target class. These new confusion matrices are presented in 

Tables 4.4.4 and 4.4.5, respectively. 
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Table 4.4.4 

Confusion matrix: combining p6MCI + p12MCI and p24MCI + p30MCI + p48MCI 

  Predicted label 

  p6MCI + p12MCI p24MCI + p30MCI + 

p48MCI 

True 

label 

p6MCI + p12MCI 23 (TP) 17 (FN) 

p24MCI + p30MCI + p48MCI 19 (FP) 13 (TN) 

Abbreviations: TP = True Positive, FN = False Negative, FP = False Positive, TN = True Negative. 

 

Tables 4.4.4 and 4.4.5 indicated that the True Positive and False Negative increase when one 

combines classes, which is expected since there are now only two classes instead of five.  

 

Table 4.4.5 

Confusion matrix: combining p6MCI + p12MCI + p24MCI and p30MCI + p48MCI 

  Predicted label 

  p6MCI + p12MCI + 

p24MCI 

p30MCI + p48MCI 

True p6MCI + p12MCI + p24MCI 45 (TP) 13 (FN) 

label p30MCI + p48MCI 11 (FP) 3 (TN) 

Abbreviations: TP = True Positive, FN = False Negative, FP = False Positive, TN = True Negative. 

Based on these confusion matrices, the F1 score, accuracy, recall and precision are calculated, 

which are presented in Table 4.4.6. This table needs to be interpreted with caution, since this is a 

post hoc analysis and the classifier is not trained on these new intervals. Both combinations give 

higher F1  scores (0.56 and 0.79) than the dummy variable (F1 score: 0.18). Notably, when 

combining p6MCI + p12MCI + p24MCI and p30MCI + p48MCI, the F1 score is even higher than 

the F1 scores achieved in all previous experiments.  

 

Table 4.4.6 

Follow-up 1: F1 score, accuracy, recall and precision calculated from confusion matrices in Tables 

4.4.4 and 4.4.5.  

Classes together:  F1 score Accuracy Recall Precision 

p6MCI + p12MCI and p24MCI + 

p30MCI + p48MCI 

0.56 0.50 0.58 0.55 

p6MCI + p12MCI + p24MCI and 

p30MCI + p48MCI 

0.79 0.67 0.78 0.80 
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Section 5: Discussion  

This section discusses the findings of the present study. For each experiment that was conducted, the 

findings are discussed in Subsection 5.1. In Subsection 5.2, the answers to the problem statement are 

provided, followed by the limitations of the current study and recommendations for future research in 

Subsections 5.3 and 5.4, respectively.  

5.1 Answers to Research Questions 

The goal of the current study was to investigate the extent to which a classifier is able to predict 

subjects’ progression from MCI to AD and its corresponding moment using MRI data. In reviewing 

the literature, no researchers investigated predicting the moment of progression but only predicting 

progression based on different features. Three research questions were set up to achieve this goal:  

 

RQ1: What classifier and in combination with which pre-processing method performs best in 

 distinguishing MCI subjects from Alzheimer’s disease subjects at baseline 

RQ2: To what extent can the optimized classifier make a binary distinction between stable MCI

  subjects and MCI subjects who progress to Alzheimer’s disease within 6, 12, 24, 30 and 48 

 months? 

RQ3: To what extent can the optimized classifier predict progression from MCI subjects to AD and 

 its corresponding moment in a multiclass classification task? 

 

Each research question is answered in the remaining part of this section. 

 

RQ1: What classifier and in combination with which pre-processing method performs best in 

distinguishing MCI subjects from Alzheimer’s disease subjects at baseline 

Since there is no classifier that performs best on every problem, the first question in the current study 

sought to determine a classifier that performs best in distinguishing MCI subjects from AD subjects in 

a proof-of-concept study. The best-performing classifier is used throughout the current study. It is 

beyond the scope of the study to examine which classifier performs best on all different experiments. 

Performances of the following classifiers are compared: DTC, LSVC, LR, PER, SGD and SVC. First, 

different pre-processing methods that work best for each classifier separately are evaluated. These 

findings, as outlined in Subsection 4.1, indicate that in this case, adding feature interactions works best 

for the DTC, and for all the other classifiers, standardizing the data works best. After this, the best 

parameters for all classifiers with their pre-processing methods are investigated. Using 

StratifiedKFold, the DTC and the SVC perform better than other classifiers, as presented in Table 

4.1.1. Since the F1 score based on cross-validation on the training set was the highest for the SVC, this 
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classifier was chosen to be used for the remaining part of the current study. To see how this classifier 

performs on unseen data, it was tested on the test set. The classifier performed slightly worse on the 

test set (F1 score: 0.76) in comparison with its performance based on cross-validation on the training 

set (F1 score: 0.83). This indicates that the model seems to slightly overfit the training data.  

  The answer to the first research question, therefore, is as follows: out the set of classifiers 

tried, the SVC performs best with the normalizing pre-processing method and tuned parameters, but it 

slightly overfits the training data.   

 

RQ2: To what extent can the optimized classifier make a binary distinction between stable MCI  

subjects and MCI subjects who progress to Alzheimer’s disease within 6, 12, 24, 30 and 48 months? 

The second research question sought to investigate how well the SVC performed in distinguishing 

stableMCI from progressionMCI, on different moments before progression. It was hypothesized that 

the closer the moment of progression, the better the performance of the classifier, since the differences 

between the classes probably increase as the moment of progression is closer. Therefore, it would be 

relatively easier to make a distinction between the two classes, as suggested in Subsection 2.1. These 

results in Subsection 4.3 further support the idea that it is possible to predict progression from MCI to 

AD. Also, the hypothesis was confirmed, since the classifier performs with an F1 score of 0.63 or 

higher on progression6MCI to progression24MCI (Table 4.2.1). This F1 score is higher in comparison 

with progression30MCI and progression48MCI, where the performance drops to 0.5 and below. One 

interesting finding is that this is not a straight descending line: the F1 score for progression48MCI and 

stableMCI is higher than that for progression30MCI and stableMCI, even though having a subtle 

difference of 0.02, which can be seen in Subsection 4.3. This is also the case for progression12MCI 

and stableMCI, which exhibits a higher F1 score than progression6MCI and stableMCI.  

  The performances in terms of accuracy observed in the current study are comparable with 

those observed by other researchers who used MRI data with a specific moment of progression 

(Trezpacs et al., 2014; Chupin et al., 2009; Wolz et al., 2010). For distinguishing stableMCI from 

progression12MCI, experiment 2.1 achieved a higher accuracy than that by Wolz et al. (2010), i.e. 

76% to 64%. This was also the case for distinguishing stableMCI from progression24MCI: experiment 

2.3 achieved an accuracy of 71%, whereas Trezpacs et al. (2014) achieved an accuracy of 67%. 

Chupin et al. (2009) achieved an accuracy of 71% in distinguishing stableMCI from 

progression18MCI, but progression18MCI is not concluded in the current study; this makes 

comparing the results more complex. Since experiments 2.2 and 2.3 achieved an accuracy of 76% and 

71% for progression12MCI and progression24MCI, respectively, it is believed that similar results for 

progression18MCI would be achieved. All these results together indicate that the model performs in 

line with prior research.  

  The answer to the second research questions, therefore, is as follows: the SVC is able to make 

a binary distinction between stableMCI and the different progressionMCIs, with similar performances 
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in comparison with prior studies. The classifier performs better when the moment of progression is 

closer, which confirms the hypothesis made in Subsection 1.2.  

 

RQ3: To what extent can the optimized classifier predict progression from MCI subjects to AD and its 

corresponding moment in a multiclass classification task? 

The third research question sought to investigate the extent to which the optimized classifier is able to 

predict progression and its corresponding moment. First, the difference in performance of the classifier 

used in RQ1, RQ2, and step 3 of RQ3 (F1 score: 0.36, see Table 4.3.1) as well as the optimized 

classifier are addressed (F1 score: 0.37, see Table 4.3.2). The difference in F1 score is 0.01, which is 

in favor of the optimized classifier. However, according to the McNemar Test, this difference in 

performance is not significant (p = 1). However, the current study continued for the remaining part 

using the ‘optimized’ classifier.  

  This model was tested on the test set. The classifier performed worse on the test set (F1 score: 

0.26) than on cross-validation of the training set (F1 score: 0.37). This is a drop of 30% in 

performance, which indicates that this model overfitted the training data.  

  However, even though this classifier seems to overfit the training data, when one compares the 

performance of the optimized classifier on the test set (F1 score: 0.26) with a Dummy classifier (F1 

score: 0.15), the SVC performs significantly better according to the McNemar Test (p = 0.0002; for a 

contingency table, see Appendix B.1). In comparison of the F1 scores achieved in experiment 2, there 

is a significant drop of performance. However, this was expected since multiclass classification is 

much more complex than binary classification. The F1 score of 0.26 is constructed by the average of 

all classes. The F1 score per class, which is mentioned in Section 4.3, indicated that the F1 score of 

0.26 is higher than the Dummy classifier mainly because of stableMCI and progression6MCI, with F1 

scores of 0.59 and 0.39 respectively. The high F1 score for stableMCI (0.59) stands out, since it is 

more than as twice as the average of all classes (F1 score: 0.26). All other classes scored below 

average and reached the lowest performance for progression48MCI (0.1). These results together 

suggest that the reason why the SVC beat the Dummy classifier is that it could classify stableMCI 

(and, to a less extent, progression6MCI) very well. Based on these results, it is not clear to what extent 

the Support-Vector classifier can predict when a subject is likely to convert to AD.  

  The answer to the third research question, therefore, is as follows: the SVC is able to make a 

multiclass prediction better than the Dummy classifier. However, this seems to be due to the 

stableMCI (and, to a less extent, the progression6MCI) class, which achieved an F1 score that was out 

of proportion. To gain more insight into this problem, a follow-up study was conducted, which 

excluded stableMCI in the multiclass-classification task.  

Follow-up Question: To what extent can the optimized classifier make a multiclass distinction among 

MCI subjects who progress to Alzheimer’s disease within 6, 12, 24, 30 and 48 months? 
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The follow-up experiment sought to examine how this classifier performs on the same multiclass-

classification task, except that the class stableMCI was excluded. This gives insight into the extent to 

which the classifier is able to make a distinction among the different progressionMCIs and conclude 

whether the classifier is able to predict the moment in which subjects will progress to AD.  

  One unanticipated finding was that the performance of the optimized classifier (0.15) was not 

better than the Dummy classifier (0.18), which was not significant according to the McNemar Test (p 

= 0.17; for a contingency table see Appendix B.2). These findings, which are provided in Subsection 

4.4, are rather disappointing. It can, therefore, be assumed that it is difficult for the classifier to make a 

sufficient distinction between those classes. However, when one looks into the performance more 

closely, an interesting pattern occurs. When the classifier makes a wrong prediction, the prediction is 

often made in the direction of the class before or after the accurate class. This may suggest that it is 

too complex to make a distinction among progression6MCI, progression12MCI, progression24MCI, 

progression30MCI and progression48MCI, because the time intervals are too close to predict the 

moment of progression.  

  There are several possible explanations for this result. As presented in Table 4.2.1, predicting 

progression in a binary-classification task is more complex as the moment of progression is further 

away into the future. A possible explanation is that that the decision boundaries, especially when the 

moment of progression is further away into the future, are not sufficient for predicting the moment of 

progression.  

  As stated in Subsection 2.1, the course of AD progresses slowly. Therefore, another possible 

explanation is that MRI biomarkers are not sensitive enough to make a distinction among the 

relatively close time intervals chosen in the current study. This idea is supported by the post hoc 

analysis.  When one adjusts the time intervals in a post hoc analysis, the accuracy increases, as can be 

seen in Table 4.4.6. Combining the progression6MCI, progression12MCI and progression24MCI, as 

well as progression30MCI and progression48MCI classes gives the highest F1 score (0.79). This 

suggests that predicting the moment of progression is possible, but only when broader time intervals 

are chosen. Further research is needed to confirm this idea.  

  Therefore, the answer to the follow-up questions is as follows: because the SVC did not 

perform better than a Dummy classifier, the SVC is insufficient for making a multiclass distinction 

among the different progressionMCI classes. Therefore, the classifier cannot predict when a subject 

will progress to AD with time intervals chosen for the current study. Thus, the results of experiment 3 

must be interpreted with caution, as the SVC performed significantly better than the Dummy classifier 

because it could only classify stableMCI well. Investigating the extent to which predicting the moment 

of progression it is possible with other time intervals is beyond the scope of the current study.  
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5.2 The Answer to the Problem Statement  

The current study addressed the problem statement: To what extent can a classifier predict the 

progression of subjects from MCI to AD and the progression’s corresponding moment, based on MRI 

biomarkers? The answer to the problem statement is as follows. The SVC can predict progression and 

its corresponding moment better than the Dummy classifier. The SVC performs better at predicting 

progression when the moment of progression is in the near future. However, this finding should be 

interpreted with caution because the classifier is insufficient for predicting the moment of progression. 

  In practice, when this model is applied on a subject - from the ADNI database or relatable 

database; when a subject is in stableMCI, the chance that this model predicts this class right is 48%. 

This means that the chance is 52% that the model will predict that the subject will progress to AD, 

whereas the subject will remain stable. This is an example of a type I error. In terms of healthcare 

costs, type I errors are expensive because medicines and treatment would be provided when this is 

unnecessary. Since this will happen more than half of the time, these results indicate that it is not a 

sufficient model in terms of reducing healthcare costs. By contrast, given the fact that a random 

subject is predicted to be in the stableMCI group, this model is right 78% of the time. This means that 

the chance is 22% that the classifier predicts that a subject will not progress to AD when the subject 

will actually progress. This is an example of a type II error. In healthcare-cost terms, the cost of type II 

error is lower than the cost of a false alarm (type I error). However, a type II error leads to 

inappropriate and inadequate treatment of both the subject and his or her disease. Even though the 

percentages of both type I and type II errors seem to be already high for the stableMCI class, type I 

and type II errors of the other classes are even higher: 67% and 53% for progression6MCI, 83% and 

90% for progression12MCI, 77% and 90% for progression24MCI, 80% and 89% for 

progression30MCI as well as 83% and 93% for progression48MCI, respectively. 

  With such high error rates, this model should not be used in practice. As stated in Subection 

1.3, no disease-modifying therapy has been found for AD, which could be due to the fact that the 

moment of progression to the disease has not yet been predicted. With this model, the moment of 

progression still cannot be predicted. As stated in Subsection 1.4, AD is an illness with one of the 

highest costs of health care. With this model, the healthcare cost would increase even more because 

many subjects would be treated for AD when they do not actually suffer from the disease. Besides that, 

many subjects who are predicted to remain stable are likely to develop AD later on and receive 

inappropriate treatment.  

 Therefore, the conclusion is that the model can predict progression to AD better than the 

Dummy classifier. However, this is in all likelihood a consequence of the stableMCI class. Because of 

the high rates of type-I error and type-II error for all classes, the performance is insufficient for clinical 

application.  
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5.3 Limitations 

The findings of the current study are subject to at least three limitations. The first limitation concerns 

the generalizability. The generalizability of these results to all MCI subjects worldwide is limited. The 

population consisted of North Americans. There could also be variances within the population of 

North America as compared to those of Europe and other continents.  

  The second limitation concerns the approach to assigning subjects to the stableMCI class. 

Even though another approach was taken for assigning subjects to the stableMCI class in comparison 

with the approach by Westman, Muehlboeck, and Simmons (2012), to be sure that the subjects 

assigned to stableMCI are stable during the complete study, one cannot guarantee that stableMCI 

subjects will not progress to AD after the current study. These subjects could already have more 

abnormal volumes of some brain structures, which could cause noise in the data. As a result, the 

decision boundaries for a classifier to be found are more complex. If it was known that a subject 

converted to AD after the current study, the subject would be removed from the stableMCI class. 

However, not knowing what happens to a subject after the study is a limitation of almost all 

observational studies.  

  The third limitation concerns the number of subjects in the test set. Due to the limited number 

of data available for the current study, the number of subjects in each class was small. As a 

consequence, the number of subjects in the test set was also small. For the classes in which the 

moment of progression is further away in time, such as progression30MCI and progression48MCI, 

there were less than 10 subjects in the test set. As a result, the classifier’s performance on these classes 

is not sufficiently reliable.  

5.4 Future Research 

The current study is expected to serve as a gateway to a new research field within the AD prediction, 

where not only the question ‘if’ a subject’s progression to AD but also ‘when’ this progression is likely 

to take place will be answered. Three directions are proposed in which further research can improve.  

  The first direction of research concerns the input object. For the current study, six features 

from MRI scans are included. In the current study, no investigation has been done on the effect of an 

increase in the number of features on performance, nor has the effect of choosing another method, 

such as PET scan or lumbar puncture, on performance been investigated. Since MRI biomarkers are 

not sensitive enough for the short time intervals chosen in the current study, research into the other 

feature combination for multiclass classification could provide insight into the possibility of predicting 

the moment of progression with short time intervals.  

  The second direction of research concerns the learning algorithms used in the current study. In 

Subsection 3.6.1, algorithms were trained of which was known that they could classify MCI converters 
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from stable MCI or AD from MCI. In addition to DTC, LSVC, LR, PER, SGD and SVC, other 

learning algorithms could be tested. There are numerous unexplored learning algorithms when it 

comes to AD prediction. Besides this, since the DTC and the SVC performed well in Experiment 1, 

investigating similar models, such as the Decision-Tree Forrest, is recommended. 

 The third direction of research concerns the time intervals for progressionMCI classes. As the 

results indicate, the SVC is insufficient for making a multiclass distinction among progression6MCI, 

progresion12MCI, progression24MCI, progression30MCI and progression48MCI. The results of the 

follow-up experiment indicate that this could be due to the time intervals used in the current study. 

Research into predicting the moment of progression with broader time intervals could be of great 

value for the early detection of AD. Based on the confusion matrix in Subection 4.4, making a 

distinction between subjects who progressed within two years and those who progressed over two 

years is recommended.  

  The fourth direction of research concerns oversampling and undersampling to the training set 

with multiclass classification. Section 2.5 stated that most solutions for oversampling and 

undersampling are only applicable to binary-class problems. The current study followed the SCUT 

algorithm proposed by Agrawal et al. (2015). Research into other solutions for applying oversampling 

and undersampling techniques to multiclass-classifications problems could benefit the classifier’s 

performance.  
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Section 6: Conclusion 

This section concludes the findings of the present study and provides recommendations for further 

research.  

The present study was designed to investigate the extent to which it is possible to predict a subject’s 

progression from MCI to AD and this progression’s corresponding moment. The current study has 

indicated that the SVC performs significantly better than a Dummy classifier. The most interesting 

finding to emerge from the current study is that the model is able to predict progression, but the 

model’s performance regarding predicting the moment of progression is insufficient. This seems to be 

due to the time intervals chosen for the moment of progression, which might be too close to each 

other. This suggests that the model could improve if broader time intervals for the moment of 

progression were chosen.  

  Even though the model is insufficient for practical application, the present study makes several 

noteworthy contributions to the field of AD prediction. This is the first study that investigated 

multiclass classification while predicting the moment of progression. However, the current study did 

not succeed in indicating whether it is possible to predict the moment of progression. The current 

study offers some insight into the importance of selecting the right time intervals, which contributes to 

the process of finding better models in the future that could eventually be used in practice.  
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Appendices 

 Appendix A: Comparing F1 scores of pre-processing methods for each classifier 

 

 
Figure A.1. Comparing F1 scores of pre-processing methods for Decision-Tree classifier. 

 

 
Figure A.2. Comparing F1 scores of pre-processing methods for Support-Vector classifier. 
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Figure A.3. Comparing F1 scores of pre-processing methods for linear Support-Vector classifier. 

 

 
Figure A.4. Comparing F1 scores of pre-processing methods for Stochastic Gradient Descent. 
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Figure A.5. Comparing F1 scores of pre-processing methods for Logistic Regression. 

 

Figure A.6. Comparing F1 scores of pre-processing methods for Perceptron.  
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Appendix B: Contingency Table needed for McNemar test 

Table B.1 

Contingency Table for RQ3 (significant)  

 Classifier A: wrong Classifier A: good 

Classifier B: wrong 79 36 

Classifier B: good 10 13 

Classifier A: Support-Vector classifier, Classifier B: Dummy classifier 

 

 

Table B.2 

Contingency Table for Follow-Up Question (not significant)  

 Classifier A: wrong Classifier A: good 

Classifier B: wrong 42 9 

Classifier B: good 17 3 

Classifier A: Support-Vector classifier, Classifier B: Dummy classifier 

 

 


